![]()
|
||||||||
атты дененің қозғалмайтын өс төңірегіндегі айналмалы қозғалысы6 Қатты дененің қозғалмайтын өс төңірегіндегі айналмалы қозғалысы
Қозғалмайтын өсті айнала қозғалатын дене деп, екі нүктесі қозғалмайтын денені айтамыз. Қозғалмайтын нүктелерді қосатын түзу оның айналу өсі болады. Қозғалмайтын Qо және Q жазықтықтарының арасындағы екі жақты бұрыш φ қатты дененің айналу бұрышы деп аталады. Бұл бұрыш берілген дененің кез келген уақыт мезгіліндегі орнын бірмәнді анықтайды. Демек, қозғалмайтын өсті айналатын қатты дененің бір ғана еркіндік дәрежесі болады. Дененің қозғалмайтын өс төңірегіндегі орны бір параметрмен анықталады. Мұндай параметр рµлін φ бұрышы атқарады. Ол уақыттың бірмәнді функциясы болып келеді. Бұл (2.61) теңдеуі қатты дененің айналу заңы немесе айналу теңдеуі деп аталады. Айналу бұрышы Дененің қозғалмайтын өсті айналуын сипаттауға қажетті екінші бір кинематикалық шаманы бұрыштық жылдамдық деп атайды. Оның алгебралық шамасы ω әрпімен белгіленеді. Бұрыштық жылдамдық ω дененің айналу бұрышы φ-дің уақыттың өтуіне қарай өзгеру тездігін белгілейтін шама. Алдымен белгілі бір уақыт аралығына сәйкес келетін айналу бұрышының өзгеруін қарастырайық. Егер оның t уақытына сәйкес мәні φ(t) –болсын, ал уақыттың t1 =t+Δt мезгіліндегі мәні φ(t+Δt) болсын. Демек Δt уақыт аралығында дене Δφ бұрышына айналыс жасайды: осындағы айналу бұрышының өсімшесі (2.62)-нің оған сәйкес келетін уақыт өсімшесі Δt -ға қатынасын құрайық та, оны ωорт деп белгілейік: ωорт орташа бұрыштық жылдамдығы деп атайды. (2.63)-тің екі жағында Δt→0 кездегі шегі: (2.64)-тің оң жағындағы шек φ(t) функциясының туындысын береді. Ал оның сол жағындағы шек дененің берілген t уақыт мезгіліндегі бұрыштық жылдамдығы ω-ны береді. Осы түсіндір-мелерді қабылдап (2.64) теңдігін мына түрде жазамыз: Бұрыштық жылдамдық векторлық шама. Жоғарыда айтылған φ бұрышын санаудың оң бағыты жөніндегі анықтаманы ескере отырып, бұрыштық жылдамдық векторын мынадай формуламен өрнектеуге болады: мұндағы
![]() Осы шамалар қатынасын дененің Δt уақыты аралығындағы орташа бұрыштық үдеу деп атап, оны εорт әрпімен белгілейміз: Бұл қатынасты пайдалана отырып, дененің берілген уақыт t мез-гіліндегі, яғни лездік бұрыштық үдеудің анықтамасын бере аламыз. Берілген уақыттағы бұрыштық үдеу деп орташа бұрыштық үдеудің Δt→0 кездегі үдеудің шегін айтамыз. Бұрыштық үдеуді ε-деп белгілесек, айтылған анықтама мына формуламен беріледі: (2.69) –теңдіктің оң жағында ω(t) функциясының уақыт бойынша алынған туындысы тұрғанын ескерсек, оны мына түрде қайталап жаза аламыз: Бұрыштық үдеу бұрыштық жылдамдықтан уақыт бойынша алынған бірінші туындыға тең немесе φ айналу бұрышынан уақыт бойынша алынған екінші туындыға тең болатын шама. Бұрыштық үдеу векторы Бір қалыпты айналмалы және бір қалыпты айнымалы айналмалы қозғалыстар.Егер қозғалыс кезінде бұрыштық үдеу ε=0 болса, онда қозғалыс ω=const тұрақты бұрыштық жылдамдықпен орындалады. Мұндай қозғалысты бір қалыпты айналмалы қозғалыс деп атаймыз. Осындай қозғалыстың бұрыштық жылдамдығының анықтамасынан мынадай өрнек алынады: Егер t0 = 0 болғанда φ = φ0 десек, соңғы теңдіктен мынадай формула шығады: мұндағы бастапқы φ0 = 0 болып келген жағдайда (2.72) –теңдіктен: Дененің айналысы кезінде оның бұрыштық үдеуі ε т±рақты болатын болса, онда мұндай айналмалы қозғалысты бір қалыпты айнымалы дейміз. Бұрыштық үдеу анықтамасынан:
Бұл теңдікті сәйкес алынған шектерде (t0=0 саналады) интег-ралдау арқылы, мынадай формула аламыз: Бұл формуламен ε=const болған жағдайдағы бұрыштық жылдамдық анықталады. (2.74) –тің екі жағында dt-ға көбейтіп интегралдау арқылы мынадай формула аламыз:
|
||||||||
|