![]()
|
|||||||
Косая плоскостьКосая плоскость Косой плоскостью называется поверхность, образованная движением прямой линии, скользящей по двум скрещивающимся прямым и остающейся во всех своих положениях параллельной некоторой плоскости параллелизма. Ту же самую поверхность можно получить, если за направляющие прямые принять любую пару образующих, например АВ(А1В1, А2В2) и СD(С1D1, С2D2), за образующую прямую - одну из направляющих (m или n) и за плоскость параллелизма - плоскость
Анимация (рис. 2.3.36) поясняет формирование косой плоскости, как поверхности с плоскостью параллелизма. Образующие косой плоскости формируются вспомогательной плоскостью, перемещающейся параллельно плоскости параллелизма. Аанимационный слайд 2.3.37 демонстрирует одно из свойств косой плоскости - наличие второй плоскости параллелизма. На рис. 2.3.38 поясняется существование семейства параболических сечений. Косая плоскость может быть получена как поверхность Каталана путем плоскопараллельного перемещения одной из парабол, как образующей, по второй параболе, как направляющей. Результат этого кинематического варианта формирования косой плоскости показан на рис. 2.3.39, где представлена та же косая плоскость, что и в предыдущих примерах, но с другим каркасом.
На рисунке так же показан пример гиперболического сечения рассматриваемой поверхности и его вырожденный случай - две прямые, проходящие через "седловую" точку.
|
|||||||
|