|
|||||||||||||||||||||||||||||
Модульный уровень⇐ ПредыдущаяСтр 23 из 23 Идея о том, что нервные центры состоят не из отдельных цепочек нейронов, работающих независимо друг от друга, а организованы в блоки или модули, объединяющие от нескольких клеток до нескольких тысяч нейронов, которые функционируют как единое целое, была выдвинута С. Рамон-и-Кахалем еще в начале XX в. В ЦНС позвоночных модули были впервые обнаружены и описаны в коре мозжечка с его упорядоченным расположением •слоев и клеточных элементов. Позднее на тангенциальных срезах соматосенсорной коры мозга мыши были выявлены кольцеобразные скопления нейронов, названные "бочонками" (англ, barrels). Оказалось, что число и пространственное расположение этих модулей точно соответствует числу и расположению чувствительных вибрисс на морде животного. Это явилось одним из первых доказательств того, что модуль является структурно-функциональной единицей нервного центра. В дальнейшем модули были обнаружены в разных отделах ЦНС у многих позвоночных. Пространственная организация модулей может быть различной: от плоских дисков, характерных для нейропиля спинного мозга, до сложнейших пространственных комплексов- "бочонков" в новой коре и стриосом в базальных ядрах конечного мозга. Однако независимо от конкретного вида модуля, он представляет собой популяцию нейронов, способных к возбуждению или торможению относительно независимо от подобных процессов в соседних группах нейронов. В состав любого модуля входят три группы клеток: нейроны, принимающие афферентные воздействия, эфферентные клетки, а также нейроны, осуществляющие локальные связи. Межнейронные контакты внутри модуля осуществляются системой "микромодулей", структурной основой которых могут быть пучки дендритов и аксонов. Размеры и количество модулей в разных отделах ЦНС и у разных животных колеблются в широких пределах. Так, в новой коре млекопитающих насчитывается от 0,6 до 2-3 млн. объединений нейронов, в составе которых находится от 3 до 10 тыс. клеток. Размеры модуля определяются объемом ветвления афферентов, входящих в данный модуль. Элементарные модули могут объединяться в более сложные комплексы, содержащие до нескольких десятков модулей. Морфологической основой такого рода объединения могут служить аксонные коллатерали нейронов модуля, распространяющиеся на большие расстояния (в новой коре от 3 до 8 мм). Таким образом, центральная нервная система всех позвоночных имеет единый план строения, основанный на общих принципах формирования и развития нервных центров всех уровней организации. ГЛАВА 2 СПИННОЙ МОЗГ Спинной мозг, Medulla spinalis, является центром, воспринимающим разнообразную соматическую информацию из внешней и внутренней среды и передающим ее в вышележащие отделы ЦНС. В нем сосредоточены моторные (эфферентные) центры, управляющие рефлекторной деятельностью поперечнополосатых мышц туловища и конечностей, и ассоциативные центры симпатического и парасимпатического отделов вегетативной нервной системы. § 1. ОБЩИЕ ПРЕДСТАВЛЕНИЯ ОБ ОРГАНИЗАЦИИ СПИННОГО МОЗГА ПОЗВОНОЧНЫХ Анатомически спинной мозг разделяется на отделы, количество сегментов в которых соответствует числу позвонков у представителей данной группы позвоночных. Так, у птиц выделяют 12 шейных, 8 грудных, 12 поясничных и 6 копчиковых сегментов; у приматов - 8 шейных, 12 грудных, по 5 поясничных и крестцовых и 2-3 копчиковых, а у некоторых рептилий (змей) число спинномозговых сегментов может достигать 500. У большинства позвоночных (рыбы, хвостатые амфибии, рептилии, птицы) спинной мозг занимает весь позвоночный канал, тогда как у бесхвостых амфибий и млекопитающих он занимает только часть канала из-за неравномерности роста спинного мозга и позвоночника в период эмбрионального развития. Так, у большинства млекопитающих спинной мозг оканчивается на уровне поясничных позвонков, однако у примитивных млекопитающих (нааример, ехидна) конец спинного мозга находится на уровне грудного отдела позвоночника. Наиболее короткий спинной мозг отмечен у южноамериканской лягушки Pipa pipa - он оканчивается на уровне 3-го позвонка. При этом для всех позвоночных выполняется одно правило: спинномозговые нервы каждого сегмента выходят из позвоночного канала через межпозвонковые отверстия на уровне "своих" позвонков, в связи с чем в каудальной части позвоночного канала формируется особая анатомическая структура - пучок спинномозговых корешков, конский хвост. На уровне каждого сегмента с обеих сторон спинного мозга отходит пара спинно-мозговых корешков: задний (дорсальный) и передний (вентральный) (рис. 15). У круглоротых дорсальные и вентральные корешки спинного мозга отходят асимметрично, тогда как у всех других позвоночных - симметрично. В районе межпозвонковых отверстий спинномозговые корешки у большинства позвоночных (за исключением бесчерепных, миног и некоторых рыб) соединяются в единый спинномозговой нерв. В составе задних корешков спинного мозга находятся спинномозговые ганглии (каждый корешок имеет по одному ганглию), содержащие чувствительные (афферентные) нейроны, которые воcпринимают а: 1-Х - пластины серого вещества по классификации Б. Рекседа; 1-4 - желатинозная субстанция (1), собственное ядро (2), ядро Кларка (3), ретикулярное (4) ядро задних рогов; 5 - промежуточная зона, 6-8 - моторные ядра передних рогов: латеральные (6) , центральные (7), медиальные (8); 9, 10 - задний (9) и передний (10) спинномозговые корешки; 11 - спинальный ганглий, 12 - спинномозговой нерв. разнообразную информацию из кожи, опорно-двигательного аппарата, внутренних органов. Спинальные ганглии развиваются из элементов ганглионарной пластинки. Принципиальным является тот факт, что у ряда низших позвоночных (взрослые круглоротые, личинки рыб, амфибий) чувствительные нервные клетки располагаются не только в спинальных ганглиях, но и внутри спинного мозга. Эти клетки, получившие название "клетки Рогон-Берда", или дорсальные чувствительные клетки, находятся в дорсолатеральной части спинного мозга и представляют собой крупные (8-20 мкм) нейроны. От их тел отходят по два отростка, которые направляются вдоль спинного мозга, образуя синапсы (в основном Таблица 3. Классификация афферентных волокон спинного мозга
электротонические) на телах и отростках спинальных интернейронов. Последние в свою очередь контактируют с мотонейронами, таким образом формируя первичную рефлекторную дугу сомато-моторного рефлекса. Электрофизиологические исследования показали, что клетки Рогон-Берда и замещающие их на более поздних этапах эмбриогенеза так называемые дорсальные чувствительные клетки связаны с механорецепцией,. тогда как чувствительные клетки в спинномозговых ганглиях воспринимают болевые и температурные стимулы. На теле клеток Рогон-Берда обнаружены многочисленные синаптические контакты неизвестного происхождения. Полагают, что они модулируют выделение медиатора (вещество Р) из клеток. У высших позвоночных на телах чувствительных нейронов в; спинномозговых ганглиях обнаружены синаптические контакты, которые образованы аксонами спинальных нейронов, приходящими по обоим корешкам. Структура спинномозгового ганглия достаточно сложная. Морфологически в нем выделяются три основные группы нейронов: крупные и мелкие псевдоуниполярные и атипичные. Последние осуществляют внутриганглионарные связи. Более многочисленные (85%) псевдоуниполярные нейроны являются сенсорными и обеспечивают поступление в спинной мозг информации об активации рецепторов разных типов (табл. 3). Рис. 16. Схема организации спинномозгового ганглия кошки (Kausz, Rethelyi, 1985). 1 - спинной мозг; 2 - ганглий; 3 - стенка туловища; 4, 5 - дорсальная (4) и вентральная (5) ветви чувствительного нерва. Стрелки показывают соответствие зон иннервации положению клеток в ганглии и спинном мозге. Расположение клеток, связанных с разными видами чувствительности и иннервирующих определенные участки тела, строго упорядочено. Так, у кошки дорсовентральный градиент распределения зон иннервации в коже соответствует проксимальнодистальному градиенту распределения клеток в ганглии, а каудальноростральный градиент зон иннервации - медиолатеральному градиенту распределения клеток (рис. 16). На сегментарном уровне организации спинного мозга сохраняется закономерный характер проекций. Во-первых, на уровне каждого сегмента по афферентным волокнам всех типов в спинной мозг поступает информация от строго определенного участка тела. Во-вторых, волокна, иннервирующие более дистально расположенные участки тела имеют намного меньшие рецептивные поля, чем проксимальные. Этим обеспечивается более высокая точность различения сигналов от дистальных участков конечностей (пальцы), связанных, как правило, с выполнением более тонких и дифференцированных движений, чем от проксимальных отделов конечностей. Развитие афферентных связей спинного мозга в филогенезе позвоночных Наиболее подробно у позвоночных изучено взаимодействие первичных афферентных волокон с мотонейронами спинного мозга. У круглоротых, как указывалось выше, часть клеток Рогон-Берда и клеток спинальных ганглиев не только устанавливает контакты с интернейронами, но и активирует мотонейроны посредством образования аксо-соматичеcких синапсов электро-химического типа. 1 - афферентные волокна и их ветви; 2 - мотонейроны; 3,4 - задние (3) и передние (4) рога серого вещества; 5, 6 - аксон (5) и дендрит (6) мотонейрона. У рыб выявлены афферентные волокна двух типов. Одни из них оканчиваются на интернейронах медиальной части дорсального рога серого вещества спинного мозга, другие образуют аксо-соматические и аксо-дендритные контакты смешанного типа на мотонейронах вентрального рога. Часть афферентных волокон может переходить на противоположную сторону спинного мозга (рис. 17). У ряда изученных хрящевых рыб (например, некоторые скаты из группы Rajaformes и акулы Squalus) обнаружены прямые моносинаптические связи с мотонейронами, тогда как у других (например, акулы Scyliorhinus canicula) таких связей не выявлено. У амфибий афферентные волокна образуют контакты не только с дистальными дендритами мотонейронов (как у большинства рыб), но и с их проксимальными ветвями и телами. Число контактов отдельного волокна с мотонейроном может достигать 60 - 70 (рис. 17). Показано, что афферентные волокна от определенной мышцы ветвятся среди большой группы мотонейронов, связанных с иннервацией различных мышц, но образуют контакты только с мотонейронами "своей" мышцы. У амфибий в спинном мозге, впервые среди позвоночных, намечается четкое топографическое разделение зон ветвления афферентов разного типа. Первичные афференты мышечных волокон (тип А) контактируют с мотонейронамн в вентральном. роге, тогда как афференты кожной и мышечной чувствительности (типы Iа, II) связаны с мотонейронами через систему интернейронов, и зона их ветвления ограничена дорсальным рогом. Распределение афферентов в спинном мозге рептилий сходно с таковым у амфибий. Часть волокон оканчивается в дорсальном роге, другие достигают вентральных рогов. Электро-физиологически показано наличие прямых моносинаптических связей афферентов с мотонейронами у ящериц, крокодилов и черепах. У млекопитающих и птиц происходит дальнейшая дифференциация входов. Основная масса проекций от кожных рецепторов (связанных с ноци-, механо- и терморецепцией) направляется в ядра дорсального рога серого вещества, а проекции таких специализированных рецепторов, как сухожильные, расположены в основании дорсального рога. Таким образом, большинство афферентов не достигает вентральных рогов спинного мозга, их контакт с мотонейронами осуществляется полисинаптически, через систему интернейронов (рис. 18). Ветвления отдельных афферентных волокон строго упорядочены и формируют сложную систему пространственных модулей, обеспечивающих высокий уровень специфичности межнейронных связей. Серое вещество спинного мозга состоит из тел и отростков нейронов и у всех позвоночных расположено вокруг центрального спинномозгового канала, являющегося остатком полости a: Ia, Ib, II-IV-различные виды афферентов; 1, 2 - возбуждающие (1) и тормозные (2) интернейроны; 3 - мотонейрон. б, в:1 - афференты; 2, 3 - аксонные терминали афферентов типа Аα (2) и Аβ (3); 4, 5 - дендрит (4) и дендритный шипик (5) интернейронов задних рогов; I-VI - пластины Рекседа. нервной трубки. Основная эволюционная тенденция в развитии серого вещества состоит, во-первых, в миграции клеток от центрального канала на периферию и, во-вторых, в прогрессивной дифференциации клеточных популяций на отдельные зоны и ядра. Так, у бесчерепных все клетки спинного мозга располагаются вокруг центрального канала, тогда как у круглоротых часть нейронов активно мигрирует в толщу спинного мозга, формируя две латерально расположенные группы. У остальных позвоночных в спинном мозге образуются отдельные популяции нейронов дорсальных и вентральных рогов. Позднее, у наземных позвоночных, в ряде отделов спинного мозга появляются боковые рога. В 1952-1954 гг. Б. Рексед предложил новую универсальную классификацию серого вещества спинного мозга, разделив его на десять пластин (I-X), различающихся по структуре составляющих их элементов и по связям (рис. 15, а). Пластина I представлена узкой полоской нейронов с характерными тангенциально ориентированными дендритами. На интернейронах пластины I оканчиваются афференты типов Аβ, Аδ и С. Аксоны интернейронов образуют восходящие тракты спинного мозга, а также посылают коллатерали в более глубокие слои спинного мозга (рис. 19). Помимо сенсорных волокон в I пластине обнаружены многочисленные афференты от вышележащих отделов спинного и головного мозга, в том числе от структур лимбической системы, через которые осуществляется контроль болевых ощущений. Пластины II и III построены из нейронов среднего размера, дендриты которых могут проникать как в зону пластины I, так и в более глубокие слои серого вещества. Аксоны этих клеток распространяются на большие расстояния и захватывают несколько сегментов, образуя многочисленные внутри- и межсегментные связи. Часть аксонов образует систему восходящих трактов. Обилие входящих в пластины I-III афферентных волокон, разнообразие нейронных типов, наличие синоптических комплексов конвергентного и дивергентного типов и модуляторных контактов определяют сложный характер межнейронных взаимодействий. Так, в вентральной части пластины III особенно многочисленны специфические формы аксо-аксональных синапсов между нейронами и афферентами, а также синапсы дендро-дендритного типа (рис. 18). Таким образом, значение нейронных комплексов пластин I-III состоит в контроле поступающей в спинной мозг сенсорной информации различного вида, в ее переработке и передаче в спинной и головной мозг. Пластины IV-VI представлены скоплениями нейронов мультиполярного типа, дендриты которых ориентированы преимущественно в дорсальном направлении и проникают в зону пластин I-III. На телах и дендритах нейронов оканчиваются Aβ, Aδ - афференты; 1 - чувствительные нейроны спинального ганглия; 2, 3 - возбуждающие (2) и тормозные (3) интернейроны; 4 - нисходящий бульбо-спинальный тракт; 5, 6 - восходящие спинно-ретикуло-таламический (5) и спинно-таламический (6) тракты. многочисленные терминали первичных афферентов из групп Аα, Аβ, Аδ, аксоны интернейронов собственного и соседних сегментов, а также волокна нисходящих трактов. Окончания афферентов строго упорядочены: в вентральный отдел пластины V проецируются болевые и высокопороговые механорецепторы, в средний - рецепторы кожи, в дорсальный - низкопороговые: механорецепторы волосяных фолликулов. Эти отделы спинного мозга являются источником основной массы проприоспинальных (собственных) путей спинного мозга, образуя три системы связей: короткие - в пределах 1-2 сегментов, промежуточные- 4-12 сегментов, и Длинные. Последние представлены аксонами, идущими в составе тонкого пучка Голля в продолговатый мозг, в то время как их коллатерали достигают промежуточного мозга. Нейроны, аксоны которых образуют систему длинных связей, локализованы в основном в пластине IV шейных и пластинах V и VI пояснично-крестцовых сегментов спинного мозга. Промежуточные и короткие проприоспинальные, пути связаны с проведением информации от рецепторов мышц, суставов, сухожилий. Часть волокон оканчивается на крупных нейронах ядра Кларка в пластине V, образующих в свою очередь крупный восходящий дорсальный спинно-мозжечковый тракт. Нейроны ядра Кларка получают проекции от афферентов флексорного рефлекса (FRA), связанных с иннервацией конечностей, причем разные афференты проецируются на различные клетки этого ядра. Пластины VII и VIII, как полагают, не получают прямых афферентных проекций и занимают промежуточное положение между задними и передними рогами серого вещества спинного мозга. Здесь широко представлены терминальные ветвления проприо- и супраспинальных трактов. Аксоны интернейронов VII и VIII пластин оканчиваются на мотонейронах и образуют восходящие и нисходящие тракты различного типа. Одной из разновидностей этих интернейронов являются клетки Реншоу, получающие коллатерали аксонов мотонейронов и осуществляющие обратное торможение последних. Латеральные отделы пластины VII на уровне грудных - верхних поясничных сегментов образуют боковые рога и состоят из скоплений ассоциативных преганглионарных нейронов вегетативной нервной системы. Современные исследования, проведенные с помощью внутриклеточных инъекций пероксидазы хрена, показали сложную структурно-функциональную организацию боковых рогов. Их нейроны относятся к ретикулярному типу, для которого характерно широкое распространение дендритав, достигающих даже пластины I задних рогов. На дендритах и телах преганглионарных нейронов обнаружены многочисленные контакты различного происхождения. В целом подробный анализ нейронной структуры промежуточной зоны спинного мозга показал, что это образование ретикулярного типа, переходящее непосредственно в ретикулярную формацию ствола головного мозга и являющееся связующим звеном между сенсорными формациями заднего рога и моторными ядрами переднего рога. Вентральные рога спинного мозга представляют особый интерес, так как здесь располагаются группы спинальных мотонейронов, управляющих деятельностью поперечнополосатой скелетной мускулатуры. В спинном мозге млекопитающих мотонейроны занимают район пластин VIII и IX и дифференцированы на группы ядер: медиальную, центральную и латеральную (рис. 15, а). Мотонейроны являются наиболее крупными клетками спинного мозга и разделяются на три группы: α-мотонейроны, крупные и обеспечивающие быстрые сокращения мышц; β-мотонейроны, мелкие и обеспечивающие медленные сокращения мышц, и γ-мотонейроны, связанные с иннервацией мышечных веретен. На примере организации моторных ядер наиболее отчетливо проявляется принцип соматотопии: каждая мышца или группа мышц иннервируется определенной группой мотонейронов (мотонейронный пул). В пределах сегмента организация мотонейронных пулов млекопитающих подчиняется так называемому правилу Романеса: нейроны, иннервирующие дистальные мышечные группы конечностей, располагаются в спинном мозге дорсально по отношению к нейронам, иннервирующим проксимальные мышечные группы. При этом мотонейроны мышц-сгибателей и -разгибателей, часто относящихся к одной мышечной группе, в структуре моторных ядер также располагаются изолированно друг от друга. Пластина X - центральное серое вещество спинного мозга занимает небольшой участок вокруг центрального канала. Здесь располагаются мелкие интернейроны, связывающие ее с другими участками серого вещества, а также проходят пучки комиссуральных волокон, соединяющих правую и левую половины спинного мозга. Эволюция мотонейронных центров спинного мозга позвоночных У круглоротых в спинном мозге намечается дифференциация мотонейронов на популяции, иннервирующие отдельные миомеры. Каждая такая популяция включает в себя группы первичных (крупных) и вторичных (мелких) мотонейронов, иннервирующих внутри отдельного миомера различные зоны (дорсальную или вентральную) и типы мышц. Первичные и вторичные мотонейроны образуют множественные контакты (от 3 до 8) на волокнах быстрых "белых" мышц - полинейронная иннервация. Мононейронная иннервация, осуществляемая только первичными мотонейронами, характерна для медленных "красных" мышц. Однако у круглоротых нет обособления отдельных популяций мотонейроров, иннервирующих разные типы мышц в пределах сегмента. У хрящевых рыб дифференциация белого и серого вещества в спинном мозге нечеткая (рис. 20). В вентральных рогах имеются три группы клеток: дорсомедиальная, вентролатеральная и центральная. Для мотонейронов характерна большая вариабельность формы и размеров, а также тенденция к тесному расположению их тел и отростков. Особенность мотонейронов рыб состоит в том, что они увеличиваются в размерах в течение всей жизни организма (в отличие от нейронов других позвоночных). У акул и скатов мотонейроны, иннервирующие красные и "белые мышцы миомеров, уже пространственно разграничены (рис. 20, в, г). Красные мышцы иннервируются мелкими мотонейронами, сосредоточенными в латеральной части мотонейронного пула, белые - крупными мотонейронами, занимающими медиальные районы. Более того, аксоны мотонейронов, иннервирующие разные участки миомеров, имеют разный диаметр и проходят в разных участках вентральных корешков. 1, 2 - задние (1) и передние (2) рога серого вещества; 3, 4 - дорсальная (3) и вентральная (4) ветви вентрального корешка спинномозгового нерва; 5, 6 - зона "белых" (5) и "красных" (6) мышц миотома. Мотонейроны костистых рыб расположены в вентральных рогах серого вещества спинного мозга и представлены двумя популяциями. Первую популяцию составляют крупные первичные мотонейроны, локализованные исключительно в дорсальной части мотонейронной колонны. Их сильно развитые дендриты проникают в белое вещество и часто достигают противоположной стороны спинного мозга. Таких мотонейронов немного: например, у золотой рыбки на 1/2 сегмента приходится 8-12 1, 2 - медиальная (1) и латеральная (2) группы мотонейронов; 3 - дорсальный корешок; 4 - спинномозговой канал. Точками обозначена зона серого вещества. клеток. Они образуют аксо-аксональные контакты электротонического или смешанного типа с маутнеровскими нейронами. Вторая популяция представлена мелкими вторичными мотонейронами, занимающими в мотонейронной колонне сегмента вентральное положение. Отдельные первичные мотонейроны иннервируют определенные участки миомеров, а разные популяции мотонейронов иннервируют в миомере различные типы мышц: первичные - белые, а вторичные - и белые и красные мышцы. Отдельное мышечное волокно иннервируется несколькими мотонейронами - полинейронная иннервация. Электрические органы, имеющиеся у некоторых рыб (в частности, у электрических скатов, сомиков) и развивающиеся из производных осевой мускулатуры, иннервируются специальной популяцией мотонейронов, расположенных в центральной зоне спинного мозга и связанных друг с другом многочисленными электротоническими контактами сомато - соматического и дендро-дендритного типов. У амфибий, как и у других низших позвоночных, мотонейроны разделяются на два основных класса: первичные (крупные) мотонейроны, дендриты которых распространяются на большие расстояния, захватывая несколько сегментов и переходя на противоположную сторону спинного мозга, и вторичные (мелкие) мотонейроны, аксоны которых не контактируют с маутнеровскими волокнами. У хвостатых амфибий популяции мотонейронов формируют две группы, или колонны: вентромедиальную и вентролатеральную. Первая содержит в основном более мелкие грушевидные клетки, а вторая представлена крупными веретеновидными нейронами, причем степень развития той или иной мотонейронной колонны сильно варьирует даже у представителей одной труппы животных (рис. 21). Иннервация мышц у хвостатых амфибий полинейронная, и популяции мотонейронов содержат как первичные, так и вторичные мотонейроны. 1, 2 -задние (1) и передние (2) рога спинного мозга; 3 - медиальные проприоспинальные тракты; 4 - спинномозговой канал; VII-IX -пластины Рекседа. У бесхвостых амфибий в спинном мозге намечается пространственное разделение мотонейронных популяций, иннервирующих разные группы мышц. Клетки, иннервирующие осевую туловищную мускулатуру, расположены в мотонейронной колонне сегмента вентральнее и медиальнее мотонейронов, иннервирующих конечности, хотя внутри пула еще нет морфологической дифференцировки нейронов, иннервирующих отдельные мышцы. Мотонейроны образуют многочисленные электротонические, химические и смешанные контакты с клетками соседних сегментов и противоположной стороны спинного мозга, создавая основу для координированной деятельности мышц туловища и конечностей. Мотонейроны спинного мозга рептилий организованы в две моторные группы: вентромедкальную и вентролатеральную, нейроны которых отличаются друг от друга по размеру и характеру ветвления дендритов (рис. 22). Мотонейроны первой группы иннервируют осевую мускулатуру, второй - мускулатуру конечностей. У рептилий мотонейроны, иннервирующие отдельные мышцы, уже расположены раздельно. Однако в связи с тем, что у них самая сложная среди позвоночных мышечная система, имеется множество вариантов моторной иннервации. Так, красные медленные мышечные волокна рептилий иннервируются полинейронально и вдоль всей поверхности волокна, тогда как белые фазные волокна, разделяемые на быстрые и медленные, иннервируются мононейронально и локально. Очень часто в отдельных мышцах красные и белые волокна перемешаны друг с другом и иннервируются разными мотонейронами. Считается, что такая иннервация мышц у рептилий обеспечивает синхронизацию их работы (например, при движении туловища у змей). Подчеркнем, что у рептилий впервые среди позвоночных дендриты большинства мотонейронов не проникают на противоположную сторону спинного мозга, и это позволяет осуществлять более тонкую регуляцию деятельности мотонейронов спинномозгового сегмента через систему интернейронов. Организация мотонейронных популяций, иннервирующих осевую мускулатуру млекопитающих, подробно изучена у крыс и кошек. Мотонейроны, связанные с определенными мышцами, занимают строго определенное положение в мотонейршном пуле. При этом мышцы, которые развиваются в соседних участках миомеров, иннервируются рядом расположенными нейронами, несмотря на возможное изменение положения данных мышц в туловище взрослого животного. У млекопитающих γ-мотонейроны, связанные с интрафузальными мышечными волокнами, рассеяны среди других нейронов данного пула. Интересно, что часть осевой мускулатуры млекопитающих - шейные мышцы - сохраняет филогенетически древний принцип иннервации - двумя разными типами мотонейронов, расположенных в разных ядрах. Остальная, как быстрая белая, так и медленная красная мускулатура не имеет двойной иннервации. Таким образом, в процессе эволюции сохраняются все возможные варианты организации нервно-мышечных отношений и соответственно мотонейронных пулов спинного мозга, причем часто независимо от филогенетического уровня. § 2. ПРОВОДЯЩИЕ ПУТИ СПИННОГО МОЗГА Все проводящие пути спинного мозга сосредоточены в белом веществе, разделяемом на три канатика: задний., боковой и передний. Основной объем канатиков занимают супраспи-нальные тракты, осуществляющие двустороннюю связь спинного и головного мозга. Тракты, занимающие узкую полоску вокруг серого вещества, называются проприоспинальными (рис. 15). Проприоспинальные тракты образованы аксонами интернейронов промежуточной зоны серого вещества. Распределение тел и окончаний проприоспинальных нейронов у позвоночных, начиная с самых ранних этапов эволюции, строго упорядочено. У высших позвоночных аксоны нейронов латеральных отделов пластин V-VII проходят в боковом канатике и оканчиваются в дорсолатеральных областях латеральных моторных ядер, ин-нервирующих мышцы-сгибатели. Нейроны центра пластины VII проецируются в вентромедкальную область этих ядер, связанную с мышцами-разгибателями. Интернейроны из медиальных районов пластин VII и VIII проецируются в медиальные моторные ядра, которые иннервируют осевую туловищную мускулатуру. При этом нейроны, образующие длинные восходящие и нисходящие проприоспинальные волокна, располагаются преимущественно в вентральных участках пластин V-VIII, а их аксоны оканчиваются в вентромедиальных районах пластин V-VII. Проприоспинальные нейроны, относящиеся к разновидности ретикулярных изодендритных нейронов, создают морфологическую основу для широкой конвергенции на их телах и дендритах супраспинальных и сенсорных афферентов. Большинства проприоспинальных нейронов активируется супраспинальными трактами моносинаптически, а первичными афферентами - полисинаптически. Таким образом, появление и развитие в эволюции позвоночных системы проприоспинальных межсегментарных связей обеспечивает (наряду с другими механизмами) координацию сложных моторных реакций. Супраспинальные тракты наибольшего развития и сложности достигают у высших млекопитающих - приматов, у которых описано их более двух десятков (рис. 15). Остановимся на наиболее важных из них. Дорсальные канатики содержат восходящие тракты, волокна которых образованы аксонами сенсорных нейронов и коллатералями интернейронов пластин V и VI. Система дорсальных канатиков у высших позвоночных построена по соматотопическому принципу: чувствительные волокна от нижней части туловища и нижних конечностей проходят медиально, формируя тонкий пучок Голля (fasciculus gracilis), от верхней части тела и верхних конечностей - латерально, образуя клиновидный пучок Бурдаха (fasciculus cuneatus), причем в самих трактах пучки волокон от определенных участков тела и конечностей проходят также отдельно друг от друга. Функционально они тоже разделяются: волокна, несущие информацию от рецепторов волосяных фолликулов и конечностей, составляют поверхностную часть пучков, от мышечных рецепторов – среднюю часть, а от рецепторов давления и вибрации - глубокую центральную часть. Оканчиваются волокна дорсальных канатиков в соответствующих ядрах продолговатого мозга. В эволюции позвоночных происходит морфологическое обособление дорсальных канатиков от латеральных. Так, уже у хрящевых и некоторых костистых рыб они разделяются волокнами нисходящего бульбо-спинального тракта. Волокна дорсальных канатиков достигают продолговатого мозга и оканчиваются в зоне, которая по своей структурно-функциональной организации соответствует ядрам этого тракта у высших позвоночных. У наземных позвоночных уровень дифференцировки дорсальных канатиков тесно связан с развитием конечностей. Например, среди рептилий он наиболее, высок у крокодилов и наименее - у змей. Кроме того, начиная с амфибий, в организации этой системы все более отчетливо проявляется соматотопический принцип, Достигающий своего максимального выражения у млекопитающих и человека. Система восходящих путей латеральных канатиков включает в себя ряд крупных трактов, соединяющих спинной мозг с продолговатым - спинно-ретикулярные, со средним - спинно-тектальные, с промежуточным мозгом - спинно-таламические, и мозжечком - спинно-мозжечковые. У низших позвоночных еще нет анатомического разделения трактов. У рептилий латеральные канатики уже дифференцированы на дорсо- и вентролатеральные пучки. Первый содержит в основном спинно-ретикулярные, спинно-тектальные и спинно-мозжечковые тракты, а второй - спинно-таламические и большую часть спинно-ретикулярных трактов. Спинно-ретикулярные тракты обнаружены у всех изученных позвоночных - от круглоротых до человека. Они оканчиваются в каудальных отделах ретикулярной формации продолговатого мозга, моторных ядрах черепномозговых нервов, достигая в ряде случаев ретикулярной формации среднего мозга. Считается, что спинно-ретикулярные тракты позвоночных обеспечивают проведение информации от болевых рецепторов, а также пролриорецепторов. Спинно-тектальные тракты описаны у большинства позвоночных, за исключением миног, лучеперых рыб и бесхвостых амфибий (возможно, что они утратили их в процессе эволюции независимо друг от друга). Спинно-тектальные тракты оканчиваются в центральном сером веществе мозга, в глубоких слоях тектума, тегментуме и интерколликулярном ядре. Спинно-таламические тракты (спинно-таламический и спинно-ретикуло-таламический) обеспечивают болевую и температурную чувствительность и проведение информации от волосяных фолликулов, рецепторов давления и мышечных афферентов III группы. Спинно-ретик
|
|||||||||||||||||||||||||||||
|