|
|||
DÉCLARATION ÉTHIQUE DES AUTEURS⇐ ПредыдущаяСтр 13 из 13 DÉ CLARATION É THIQUE DES AUTEURS Les auteurs soutiennent que les repré sentations techniques, scientifiques, mé dicales et de santé publique pré senté es dans la litté rature scientifique en gé né ral, y compris dans cette revue, sont vé ridiques, et exactes dans toute la mesure du possible, et destiné es à servir au maximum à proté ger la santé et le bien-ê tre de l'humanité et de l'environnement naturel de la Terre.
CONFLITS D'INTERÊ TS Les auteurs dé clarent n'avoir aucun conflit d'inté rê ts.
REFERENCES
1. Allen CD, Breshears DD, McDowell NG. On underestimation of global vulnerability to tree mortality and forest die‐ off from hotter drought in the Anthropocene. Ecosphere. 2015; 6(8): 1-55. 2. Millar CI, Stephenson NL. Temperate forest health in an era of emerging megadisturbance. Science. 2015; 349(6250): 823-6. 3. Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under globalchange-type drought. Proceedings of the National Academy of Sciences. 2009; 106(17): 7063-6. 4. Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science. 2008; 320(5882): 1444-9. 5. Carnicer J, Coll M, Ninyerola M, Pons X, Sanchez G, Penuelas J. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences. 2011; 108(4): 1474-8. Available: http: //www. ipcc. ch/report/ar5/ (Accessed June 19, 2018) 6. Herndon JM. An open letter to members of AGU, EGU, and IPCC alleging promotion of fake science at the expense of human and environmental health and comments on AGU draft geoengineering position statement. New Concepts in Global Tectonics Journal. 2017; 5(3): 413-6. 7. Allan RP, Soden BJ. Atmospheric warming and the amplification of precipitation extremes. Science. 2008; 321(5895): 1481-4. 8. Hamilton JA, Royauté R, Wright JW, Hodgskiss P, Ledig FT. Genetic conservation and management of the California endemic, Torrey pine (Pinus torreyana Parry): Implications of genetic rescue in a genetically depauperate species. Ecology and Evolution. 2017; 7(18): 7370-81. 9. Fillius ML. Native Plants, Torrey Pines State Reserve and Nearby San Diego County Locations. 3rd ed. San Diego, California, USA: Fillius Interests; 2010. 10. Rogers M. Endangered Flora of California: lulu. com. 2015; 172. 11. Fleming JR. Fixing the Sky: The Checkered History of Weather and Climate Control. New York: Columbia University Press; 2010. 12. Thomas W. Chemtrails Confirmed. Carson City, Nevada (USA): Bridger House Publishers; 2004. 13. Newell HE. A recommended national program in weather modification – a report to the interdepartmental committee for atmospheric sciences (ICAS) No. 10a. Washington, DC; 1996. 14. U. S. Senate: Programs, Problems, Policy, and Potential. Washington, DC; 1978. 15. House TJ, Near JB, Shields WB, Celentano RJ, Husband DM, Mercer AE, et al. Weather as a Force Multiplier: Owning the Weather in 2025. US Air Force; 1996. 16. Executive summary statement – Update on the meeting of the expert team on weather modification research. Abu Dhabi; 2010. 17. Diehl SR. Charged seed cloud as a method for increasing particle collisions and for scavenging airborne biological agents and other contaminants Diehl, SR. Feb 12; 2013. 18. Davidson P, Hunt HEM, Burgoyne CJ. Atmospheric delivery system US 9363954 B2. U S Patent June 14, 2016. US9363954 B2. 19. Jenkins RT. Production or distribution of radiative forcing agents US 8944363 B2. U S Patent US8944363 B2. Feb. 3, 2015. 20. Axisa D, DeFelice TP. Modern and prospective technologies for weather modification activities: A look at integrating unmanned aircraft systems. Atmospheric Research. 2016; 178–179: 114-24. 21. Doshi N, Agashe S. Feasibility study of artificial rainfall system using ion seeding with high voltage source. Journal of Electrostatics. 2015; 74: 115-27. 22. Fleming JR. The pathological history of weather and climate modification: Three cycles of promise and hype. Hist Stud Phys Biol Sci. 2006; 37(1): 3-25. 23. Available: http: //wwwnuclearplanetcom/US AFpdf (Accessed June 19, 2018) 24. Herndon JM. Aluminum poisoning of humanity and Earth's biota by clandestine geoengineering activity: Implications for India. Curr Sci. 2015; 108(12): 2173-7. 25. Herndon JM. Adverse agricultural consequences of weather modification. AGRIVITA Journal of Agricultural Science. 2016; 38(3): 213-21. 26. Herndon JM, Whiteside M. Further evidence of coal fly ash utilization in tropospheric geoengineering: Implications on human and environmental health. J Geog Environ Earth Sci Intn. 2017; 9(1): 1-8. 27. Herndon JM, Whiteside M. Contamination of the biosphere with mercury: Another potential consequence of on-going climate manipulation using aerosolized coal fly ash J Geog Environ Earth Sci Intn. 2017; 13(1): 1-11. 28. Herndon JM. Obtaining evidence of coal fly ash content in weather modification (geoengineering) through analyses of postaerosol spraying rainwater and solid substances. Ind J Sci Res and Tech. 2016; 4(1): 30-6. 29. Shea P, Neustein M. Protection of a rare stand of Torrey pine from Ips paraconfusus. Protection of a Rare Stand of Torrey Pine from Ips paraconfusus. 1995; (INT-318): 39-43. 30. Storer A, Gordon T, Dallara P, Wood D. Pitch canker kills pines, spreads to new species and regions. California Agriculture. 1994; 48(6): 9-13. 31. Eskalen A, Stouthamer R, Lynch SC, Rugman-Jones PF, Twizeyimana M, Gonzalez A, et al. Host range of Fusarium dieback and its ambrosia beetle (Coleoptera: Scolytinae) vector in southern California. Plant Disease. 2013; 97(7): 93851. 32. Sparling DW, Lowe TP. Environmental hazards of aluminum to plants, invertibrates, fish, and wildlife. Rev Environ Contam Toxicol. 1996; 145: 1-127. 33. Likens GE, Bormann FH. Acid rain: A serious regional environmental problem. Science. 1974; 184(4142): 1176-9. 34. Zevenhoven R, Kilpinen P. Control of pollutants in flue gases and fuel gases: Helsinki University of Technology Espoo, Finland; 2001. 35. Chen Y, Shah N, Huggins F, Huffman G, Dozier A. Characterization of ultrafine coal fly ash particles by energy filtered TEM. Journal of Microscopy. 2005; 217(3): 22534. 36. Moreno N, Querol X, André s JM, Stanton K, Towler M, Nugteren H, et al. Physicochemical characteristics of European pulverized coal combustion fly ashes. Fuel. 2005; 84: 1351-63. 37. Fisher GL. Biomedically relevant chemical and physical properties of coal combustion products. Environ Health Persp. 1983; 47: 189-99. 38. Suloway JJ, Roy WR, Skelly TR, Dickerson DR, Schuller RM, Griffin RA. Chemical and toxicological properties of coal fly ash. Illinois: Illinois Department of Energy and Natural Resources; 1983. 39. Temple PJ, Bytnerowicz A, Fenn ME, Poth MA. Air pollution impacts in the mixed conifer forests of southern California. In: Kus, Barbara E, and Beyers, Jan L, technical coordinators Planning for Biodiversity: Bringing Research and Management Together Gen Tech Rep PSW-GTR-195 Albany, CA: Pacific Southwest Research Station, Forest Service, US Department of Agriculture: 145-164. 2005; 195. 40. Zvereva EL, Roitto M, Kozlov MV. Growth and reproduction of vascular plants in polluted environments: A synthesis of existing knowledge. Environmental Reviews. 2010; 18(NA): 355-67. 41. Maher BA, Ahmed IA, Davison B, Karloukovski V, Clarke R. Impact of roadside tree lines on indoor concentrations of traffic-derived particulate matter. Environmental Science & Technology. 2013; 47(23): 13737-44. 42. Gawel JE, Ahner BA, Friedland AJ, Morel FM. Role for heavy metals in forest decline indicated by phytochelatin measurements. Nature. 1996; 381(6577): 64.
43. Huttunen S, LAINE K, editors. Effects of air-borne pollutants on the surface wax structure of Pinus sylvestris needles. Annales Botanici Fennici; 1983. JSTOR. 44. Zhang W, Wang B, Niu X. Relationship between leaf surface characteristics and particle capturing capacities of different tree species in Beijing. Forests. 2017; 8(3): 92. 45. Burkhardt J, Pariyar S. Particulate pollutants are capable to ‘degrade’ epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L. ). Environmental Pollution. 2014; 184: 659-67. 46. Tuomisto H, editor Use of Picea abies needles as indicators of air pollution: epicuticular wax morphology. Annales Botanici Fennici; 1988. JSTOR. 47. Mossor-Pietraszewska T. Effect of aluminium on plant growth and metabolism. Acta Biochimica Polonica- English Edition. 2001; 48(3): 673-86. 48. Barabasz W, Albinska D, Jaskowska M, Lipiec J. Ecotoxicology of aluminium. Polish Journal of Environmental Studies. 2002; 11(3): 199-204. 49. Godbold D, Fritz E, Hü ttermann A. Aluminum toxicity and forest decline. Proceedings of the National Academy of Sciences. 1988; 85(11): 3888-92. 50. Bentz BJ, Ré gniè re J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, et al. Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience. 2010; 60(8): 602-13. 51. Stark R, Cobb F. Smog injury, root diseases and bark beetle damage in ponderosa pine. California Agriculture. 1969; 23(9): 13-5. 52. Fettig CJ, Hilszczań ski J. Management strategies for bark beetles in conifer forests. Bark Beetles: Elsevier. 2015; 555- 84. 53. Heliovaara K, Vaisanen R. Bark beetles and associated species with high heavy metal tolerance. Journal of Applied Entomology. 1991; 111(1-5): 397-405. 54. Roth-Holzapfel M, Funke W. Element content of bark-beetles (Ips typographus Linne, Trypodendron lineatum Olivier; Scolytidea): A contribution to biological monitoring. Biology and Fertility of Soils. 1990; 9(2): 192-8. 55. Mukherjee AB, Nuorteva P. Toxic metals in forest biota around the steel works of Rautaruukki Oy, Raahe, Finland. Science of the Total Environment. 1994; 151(3): 191- 204. 56. Có rdoba C, Munoz J, Cachorro V, de Carcer IA, Cussó F, Jaque F. The detection of solar ultraviolet-C radiation using KCl: Eu2+ thermoluminescence dosemeters. Journal of Physics D: Applied Physics. 1997; 30(21): 3024. 57. D'Antoni H, Rothschild L, Schultz C, Burgess S, Skiles J. Extreme environments in the forests of Ushuaia, Argentina. Geophysical Research Letters. 2007; 34(22). 58. Herndon JM, Hoisington RD, Whiteside M. Deadly ultraviolet UV-C and UV-B penetration to Earth’s surface: Human and environmental health implications. J Geog Environ Earth Sci Intn. 2018; 14(2): 1-11. 59. Cabrol NA, Feister U, Hä der D-P, Piazena H, Grin EA, Klein A. Record solar UV irradiance in the tropical Andes. Frontiers in Environmental Science. 2014; 2(19). Responses of Plants to UV-B Radiation Related Stress. UV-B Radiation: From Environmental Stressor to Regulator of Plant Growth. 2017; 75. 60. NRC. Trace-element Geochemistry of Coal Resource Development Related to Environmental Quality and Health: National Academy Press; 1980. 61. Sharma S, Chatterjee S, Kataria S, Joshi J, Datta S, Vairale MG, et al. A review on Responses of Plants to UV-B Radiation Related Stress. UV-B Radiation: From Environmental Stressor to Regulator of Plant Growth. 2017; 75. 62. Singh S, Kumar P, Ra AK. Ultraviolet radiation stress: Molecular and physiological adaptations in trees. Abiotic stress tolerance in plants: Springer. 2006; 91-110. 63. Ries G, Heller W, Puchta H, Sandermann H, Seidlitz HK, Hohn B. Elevated UV-B radiation reduces genome stability in plants. Nature. 2000; 406(6791): 98. 64. Benca JP, Duijnstee IA, Looy CV. UV-B– induced forest sterility: Implications of ozone shield failure in Earth’s largest extinction. Science Advances. 2018; 4(2): e1700618. 65. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012; 484(7393): 186. 66. Wingfield M, Hammerbacher A, Ganley R, Steenkamp E, Gordon T, Wingfield B, et al. Pitch canker caused by Fusarium circinatum–a growing threat to pine plantations and forests worldwide. Australasian Plant Pathology. 2008; 37(4): 319-34. 67. Hori M, Shibuya K, Sato M, Saito Y. Lethal effects of short-wavelength visible light on insects. Scientific Reports. 2014; 4: 7383. 68. Van der Linde JA, Six DL, Wingfield MJ, Roux J. Fungi and insects associated with Euphorbia ingens die- off in South Africa. Southern Forests: A Journal of Forest Science. 2018; 80(1):
L'historique de l'examen par les pairs: L'historique de l'é valuation par les pairs pour cet article peut ê tre consulté ici: http: //www. sciencedomain. org/review-history/25791
|
|||
|