Хелпикс

Главная

Контакты

Случайная статья





Сведения об авторах 4 страница



Иерархия каталогов может быть деревом или сетью. Каталоги образуют дерево, если файлу разрешено входить только в один каталог, и сеть - если файл может входить сразу в несколько каталогов. В MS-DOS каталоги образуют древовидную структуру, а в UNIX'е - сетевую. Как и любой другой файл, каталог имеет символьное имя и однозначно идентифицируется составным именем, содержащим цепочку символьных имен всех каталогов, через которые проходит путь от корня до данного каталога.

Рис. 6.1. Структура каталогов: а - структура записи каталога MS-DOS (32 байта); б - структура записи каталога ОС UNIX

Рис. 6.2. Логическая организация файловой системы:
а - одноуровневая; б - иерархическая (дерево); в - иерархическая (сеть)

6.4. Организация файла

Логическая организация файла

Программист имеет дело с логической организацией файла, представляя файл в виде определенным образом организованных логических записей. Логическая запись - это наименьший элемент данных, которым может оперировать программист при обмене с внешним устройством. Даже если физический обмен с устройством осуществляется большими единицами, операционная система обеспечивает программисту доступ к отдельной логической записи. На рис. 6.3 показаны несколько схем логической организации файла. Записи могут быть фиксированной длины или переменной длины. Записи могут быть расположены в файле последовательно (последовательная организация) или в более сложном порядке, с использованием так называемых индексных таблиц, позволяющих обеспечить быстрый доступ к отдельной логической записи (индексно-последовательная организация). Для идентификации записи может быть использовано специальное поле записи, называемое ключом. В файловых системах ОС UNIX и MS-DOS файл имеет простейшую логическую структуру - последовательность однобайтовых записей.

Рис. 6.3. Способы логической организации файлов

Физическая организация и адрес файла

Физическая организация файла описывает правила расположения файла на устройстве внешней памяти, в частности на диске. Файл состоит из физических записей - блоков. Блок - наименьшая единица данных, которой внешнее устройство обменивается с оперативной памятью. Непрерывное размещение - простейший вариант физической организации (рис. 6.4,а), при котором файлу предоставляется последовательность блоков диска, образующих единый сплошной участок дисковой памяти. Для задания адреса файла в этом случае достаточно указать только номер начального блока. Другое достоинство этого метода - простота. Но имеются и два существенных недостатка. Во-первых, во время создания файла заранее не известна его длина, а значит не известно, сколько памяти надо зарезервировать для этого файла, во-вторых, при таком порядке размещения неизбежно возникает фрагментация, и пространство на диске используется не эффективно, так как отдельные участки маленького размера (минимально 1 блок) могут остаться не используемыми.

Рис. 6.4. Физическая организация файла
а - непрерывное размещение; б - связанный список блоков;
в - связанный список индексов; г - перечень номеров блоков

Следующий способ физической организации - размещение в виде связанного списка блоков дисковой памяти (рис. 6.4,б). При таком способе в начале каждого блока содержится указатель на следующий блок. В этом случае адрес файла также может быть задан одним числом - номером первого блока. В отличие от предыдущего способа, каждый блок может быть присоединен в цепочку какого-либо файла, следовательно, фрагментация отсутствует. Файл может изменяться во время своего существования, наращивая число блоков. Недостатком является сложность реализации доступа к произвольно заданному месту файла: для того, чтобы прочитать пятый по порядку блок файла, необходимо последовательно прочитать четыре первых блока, прослеживая цепочку номеров блоков. Кроме того, при этом способе количество данных файла, содержащихся в одном блоке, не равно степени двойки (одно слово израсходовано на номер следующего блока), а многие программы читают данные блоками, размер которых равен степени двойки.

Популярным способом, используемым, например, в файловой системе FAT операционной системы MS-DOS, является использование связанного списка индексов. С каждым блоком связывается некоторый элемент - индекс. Индексы располагаются в отдельной области диска (в MS-DOS это таблица FAT). Если некоторый блок распределен некоторому файлу, то индекс этого блока содержит номер следующего блока данного файла. При такой физической организации сохраняются все достоинства предыдущего способа, но снимаются оба отмеченных недостатка: во-первых, для доступа к произвольному месту файла достаточно прочитать только блок индексов, отсчитать нужное количество блоков файла по цепочке и определить номер нужного блока, и, во-вторых, данные файла занимают блок целиком, а значит имеют объем, равный степени двойки.

В заключение рассмотрим задание физического расположения файла путем простого перечисления номеров блоков, занимаемых этим файлом. ОС UNIX использует вариант данного способа, позволяющий обеспечить фиксированную длину адреса, независимо от размера файла. Для хранения адреса файла выделено 13 полей. Если размер файла меньше или равен 10 блокам, то номера этих блоков непосредственно перечислены в первых десяти полях адреса. Если размер файла больше 10 блоков, то следующее 11-е поле содержит адрес блока, в котором могут быть расположены еще 128 номеров следующих блоков файла. Если файл больше, чем 10+128 блоков, то используется 12-е поле, в котором находится номер блока, содержащего 128 номеров блоков, которые содержат по 128 номеров блоков данного файла. И, наконец, если файл больше 10+128+128*128, то используется последнее 13-е поле для тройной косвенной адресации, что позволяет задать адрес файла, имеющего размер максимум 10+ 128 + 128*128 + 128*128*128.

Права доступа к файлу

Определить права доступа к файлу - значит определить для каждого пользователя набор операций, которые он может применить к данному файлу. В разных файловых системах может быть определен свой список дифференцируемых операций доступа. Этот список может включать следующие операции:

  • создание файла,
  • уничтожение файла,
  • открытие файла,
  • закрытие файла,
  • чтение файла,
  • запись в файл,
  • дополнение файла,
  • поиск в файле,
  • получение атрибутов файла,
  • установление новых значений атрибутов,
  • переименование,
  • выполнение файла,
  • чтение каталога,

и другие операции с файлами и каталогами.

В самом общем случае права доступа могут быть описаны матрицей прав доступа, в которой столбцы соответствуют всем файлам системы, строки - всем пользователям, а на пересечении строк и столбцов указываются разрешенные операции (рис. 6.5).

Рис. 6.5. Матрица прав доступа

В некоторых системах пользователи могут быть разделены на отдельные категории. Для всех пользователей одной категории определяются единые права доступа. Например, в системе UNIX все пользователи подразделяются на три категории: владельца файла, членов его группы и всех остальных.

Различают два основных подхода к определению прав доступа:

· избирательный доступ, когда для каждого файла и каждого пользователя сам владелец может определить допустимые операции;

· мандатный подход, когда система наделяет пользователя определенными правами по отношению к каждому разделяемому ресурсу (в данном случае файлу) в зависимости от того, к какой группе пользователь отнесен.

6.5. Кэширование диска

В некоторых файловых системах запросы к внешним устройствам, в которых адресация осуществляется блоками (диски, ленты), перехватываются промежуточным программным слоем-подсистемой буферизации. Подсистема буферизации представляет собой буферный пул, располагающийся в оперативной памяти, и комплекс программ, управляющих этим пулом. Каждый буфер пула имеет размер, равный одному блоку. При поступлении запроса на чтение некоторого блока подсистема буферизации просматривает свой буферный пул и, если находит требуемый блок, то копирует его в буфер запрашивающего процесса. Операция ввода-вывода считается выполненной, хотя физического обмена с устройством не происходило. Очевиден выигрыш во времени доступа к файлу. Если же нужный блок в буферном пуле отсутствует, то он считывается с устройства и одновременно с передачей запрашивающему процессу копируется в один из буферов подсистемы буферизации. При отсутствии свободного буфера на диск вытесняется наименее используемая информация. Таким образом, подсистема буферизации работает по принципу кэш-памяти.

6.6. Общая модель файловой системы

Функционирование любой файловой системы можно представить многоуровневой моделью (рис. 6.6), в которой каждый уровень предоставляет некоторый интерфейс (набор функций) вышележащему уровню, а сам, в свою очередь, для выполнения своей работы использует интерфейс (обращается с набором запросов) нижележащего уровня.

Задачей символьного уровня является определение по символьному имени файла его уникального имени. В файловых системах, в которых каждый файл может иметь только одно символьное имя (например, MS-DOS), этот уровень отсутствует, так как символьное имя, присвоенное файлу пользователем, является одновременно уникальным и может быть использовано операционной системой. В других файловых системах, в которых один и тот же файл может иметь несколько символьных имен, на данном уровне просматривается цепочка каталогов для определения уникального имени файла. В файловой системе UNIX, например, уникальным именем является номер индексного дескриптора файла (i-node).

Рис. 6.6. Общая модель файловой системы

На следующем, базовом уровне по уникальному имени файла определяются его характеристики: права доступа, адрес, размер и другие. Как уже было сказано, характеристики файла могут входить в состав каталога или храниться в отдельных таблицах. При открытии файла его характеристики перемещаются с диска в оперативную память, чтобы уменьшить среднее время доступа к файлу. В некоторых файловых системах (например, HPFS) при открытии файла вместе с его характеристиками в оперативную память перемещаются несколько первых блоков файла, содержащих данные.

Следующим этапом реализации запроса к файлу является проверка прав доступа к нему. Для этого сравниваются полномочия пользователя или процесса, выдавших запрос, со списком разрешенных видов доступа к данному файлу. Если запрашиваемый вид доступа разрешен, то выполнение запроса продолжается, если нет, то выдается сообщение о нарушении прав доступа.

На логическом уровне определяются координаты запрашиваемой логической записи в файле, то есть требуется определить, на каком расстоянии (в байтах) от начала файла находится требуемая логическая запись. При этом абстрагируются от физического расположения файла, он представляется в виде непрерывной последовательности байт. Алгоритм работы данного уровня зависит от логической организации файла. Например, если файл организован как последовательность логических записей фиксированной длины l, то n-ая логическая запись имеет смещение l((n-1) байт. Для определения координат логической записи в файле с индексно-последовательной организацией выполняется чтение таблицы индексов (ключей), в которой непосредственно указывается адрес логической записи.

Рис. 6.7. Функции физического уровня файловой системы

Исходные данные:
V - размер блока
N - номер первого блока файла
S - смещение логической записи в файле

Требуется определить на физическом уровне:

n - номер блока, содержащего требуемую логическую запись

s - смещение логической записи в пределах блока

n = N + [S/V], где [S/V] - целая часть числа S/V
s = R [S/V] - дробная часть числа S/V

На физическом уровне файловая система определяет номер физического блока, который содержит требуемую логическую запись, и смещение логической записи в физическом блоке. Для решения этой задачи используются результаты работы логического уровня - смещение логической записи в файле, адрес файла на внешнем устройстве, а также сведения о физической организации файла, включая размер блока. Рис. 6.7 иллюстрирует работу физического уровня для простейшей физической организации файла в виде непрерывной последовательности блоков. Подчеркнем, что задача физического уровня решается независимо от того, как был логически организован файл.

После определения номера физического блока, файловая система обращается к системе ввода-вывода для выполнения операции обмена с внешним устройством. В ответ на этот запрос в буфер файловой системы будет передан нужный блок, в котором на основании полученного при работе физического уровня смещения выбирается требуемая логическая запись.

6.7. Отображаемые в память файлы

По сравнению с доступом к памяти, традиционный доступ к файлам выглядит запутанным и неудобным. По этой причине некоторые ОС, начиная с MULTICS, обеспечивают отображение файлов в адресное пространство выполняемого процесса. Это выражается в появлении двух новых системных вызовов: MAP (отобразить) и UNMAP (отменить отображение). Первый вызов передает операционной системе в качестве параметров имя файла и виртуальный адрес, и операционная система отображает указанный файл в виртуальное адресное пространство по указанному адресу.

Предположим, например, что файл f имеет длину 64 К и отображается на область виртуального адресного пространства с начальным адресом 512 К. После этого любая машинная команда, которая читает содержимое байта по адресу 512 К, получает 0-ой байт этого файла и т.д. Очевидно, что запись по адресу 512 К + 1100 изменяет 1100-й байт файла. При завершении процесса на диске остается модифицированная версия файла, как если бы он был изменен комбинацией вызовов SEEK и WRITE.

В действительности при отображении файла внутренние системные таблицы изменяются так, чтобы данный файл служил хранилищем страниц виртуальной памяти на диске. Таким образом, чтение по адресу 512 К вызывает страничный отказ, в результате чего страница 0 переносится в физическую память. Аналогично, запись по адресу 512 К + 1100 вызывает страничный отказ, в результате которого страница, содержащая этот адрес, перемещается в память, после чего осуществляется запись в память по требуемому адресу. Если эта страница вытесняется из памяти алгоритмом замены страниц, то она записывается обратно в файл в соответствующее его место. При завершении процесса все отображенные и модифицированные страницы переписываются из памяти в файл.

Отображение файлов лучше всего работает в системе, которая поддерживает сегментацию. В такой системе каждый файл может быть отображен в свой собственный сегмент, так что k-ый байтв файле является k-ым байтом сегмента. На рис. 6.8 а изображен процесс, который имеет два сегмента – кода и данных. Предположим, что этот процесс копирует файлы. Для этого он сначала отображает файл-источник, например, abc. Затем он создает пустой сегмент и отображает на него файл назначения, например, файл ddd.

 

Рис. 6.8. (а) Сегменты процесса перед отображением файлов в адресное пространство; (б) процесс после отображения существующего файла abc в один сегмент и создания нового сегмента для файла ddd

С этого момента процесс может копировать сегмент-источник в сегмент-приемник с помощью обычного программного цикла, использующего команды пересылки в памяти типа mov. Никакие вызовы READ или WRITE не нужны. После выполнения копирования процесс может выполнить вызов UNMAP для удаления файла из адресного пространства, а затем завершиться. Выходной файл ddd будет существовать на диске, как если бы он был создан обычным способом.

Хотя отображение файлов исключает потребность в выполнении ввода-вывода и тем самым облегчает программирование, этот способ порождает и некоторые новые проблемы. Во-первых, для системы сложно узнать точную длину выходного файла, в данном примере ddd. Проще указать наибольший номер записанной страницы, но нет способа узнать, сколько байт в этой странице было записано. Предположим, что программа использует только страницу номер 0, и после выполнения все байты все еще установлены в значение 0 (их начальное значение). Быть может, файл состоит из 10 нулей. А может быть, он состоит из 100 нулей. Как это определить? Операционная система не может это сообщить. Все, что она может сделать, так это создать файл, длина которого равна размеру страницы.

Вторая проблема проявляется (потенциально), если один процесс отображает файл, а другой процесс открывает его для обычного файлового доступа. Если первый процесс изменяет страницу, то это изменение не будет отражено в файле на диске до тех пор, пока страница не будет вытеснена на диск. Поддержание согласованности данных файла для этих двух процессов требует от системы больших забот.

Третья проблема состоит в том, что файл может быть больше, чем сегмент, и даже больше, чем все виртуальное адресное пространство. Единственный способ ее решения состоит в реализации вызова MAP таким образом, чтобы он мог отображать не весь файл, а его часть. Хотя такая работа, очевидно, менее удобна, чем отображение целого файла.

6.8. Современные архитектуры файловых систем

Разработчики новых операционных систем стремятся обеспечить пользователя возможностью работать сразу с несколькими файловыми системами. В новом понимании файловая система состоит из многих составляющих, в число которых входят и файловые системы в традиционном понимании.

Современная файловая система имеет многоуровневую структуру (рис. 6.9), на верхнем уровне которой располагается так называемый переключатель файловых систем (в Windows 95, например, такой переключатель называется устанавливаемым диспетчером файловой системы – installable filesystem manager, IFS). Он обеспечивает интерфейс между запросами приложения и конкретной файловой системой, к которой обращается это приложение. Переключатель файловых систем преобразует запросы в формат, воспринимаемый следующим уровнем – уровнем файловых систем.

Каждый компонент уровня файловых систем выполнен в виде драйвера соответствующей файловой системы и поддерживает определенную организацию файловой системы. Переключатель является единственным модулем, который может обращаться к драйверу файловой системы. Приложение не может обращаться к нему напрямую. Драйвер файловой системы может быть написан в виде реентерабельного кода, что позволяет сразу нескольким приложениям выполнять операции с файлами. Каждый драйвер файловой системы в процессе собственной инициализации регистрируется у переключателя, передавая ему таблицу точек входа, которые будут использоваться при последующих обращениях к файловой системе.

Рис. 6.9. Архитектура современной файловой системы

Для выполнения своих функций драйверы файловых систем обращаются к подсистеме ввода-вывода, образующей следующий слой файловой системы новой архитектуры. Подсистема ввода вывода - это составная часть файловой системы, которая отвечает за загрузку, инициализацию и управление всеми модулями низших уровней файловой системы. Обычно эти модули представляют собой драйверы портов, которые непосредственно занимаются работой с аппаратными средствами. Кроме этого подсистема ввода-вывода обеспечивает некоторый сервис драйверам файловой системы, что позволяет им осуществлять запросы к конкретным устройствам. Подсистема ввода-вывода должна постоянно присутствовать в памяти и организовывать совместную работу иерархии драйверов устройств. В эту иерархию могут входить драйверы устройств определенного типа (драйверы жестких дисков или накопителей на лентах), драйверы, поддерживаемые поставщиками (такие драйверы перехватывают запросы к блочным устройствам и могут частично изменить поведение существующего драйвера этого устройства, например, зашифровать данные), драйверы портов, которые управляют конкретными адаптерами.

Большое число уровней архитектуры файловой системы обеспечивает авторам драйверов устройств большую гибкость - драйвер может получить управление на любом этапе выполнения запроса - от вызова приложением функции, которая занимается работой с файлами, до того момента, когда работающий на самом низком уровне драйвер устройства начинает просматривать регистры контроллера. Многоуровневый механизм работы файловой системы реализован посредством цепочек вызова.

В ходе инициализации драйвер устройства может добавить себя к цепочке вызова некоторого устройства, определив при этом уровень последующего обращения. Подсистема ввода-вывода помещает адрес целевой функции в цепочку вызова устройства, используя заданный уровень для того, чтобы должным образом упорядочить цепочку. По мере выполнения запроса, подсистема ввода-вывода последовательно вызывает все функции, ранее помещенные в цепочку вызова.

Внесенная в цепочку вызова процедура драйвера может решить передать запрос дальше - в измененном или в неизмененном виде - на следующий уровень, или, если это возможно, процедура может удовлетворить запрос, не передавая его дальше по цепочке.

7. Система прерываний

7.1. Основные понятия. Типы прерываний

Прерывание - это сигнал, по которому процессор "узнает" о совершении асинхронного события. Другими словами, прерывание - это ответ вычислительной системы на наступление особого события, нарушающего последовательное выполнение команд текущей программы, то есть, это - изменение          естественного порядка выполнения программы, которое связано с необходимостью реакции системы на работу внешних устройств, а также на ошибки и особые ситуации, возникшие при выполнении программы. "Ответ" системы на наступившее событие заключается в запуске программы обработки данного прерывания - обработчика прерывания,специальной программы, специфической для каждой возникшей ситуации, после выполнения которой, если это возможно, возобновляется работа прерванной программы.

Замечание. Таким образом, механизм обработки прерываний предоставляет возможность организации ветвления при реализации программных процессов.

В упрощенном представлении можно выделить три типа прерываний:

1) внутренние,

2) внешние,

3) внепроцессорные.

Внутренние прерывания. К прерываниям этого типа относят:

группу программных прерываний (деление на нуль, переполнение, неверная адресация и т. п.),

прерывания от схем контроля машины, сбоев системы питания и др.

Обработка прерываний этого типа состоит в выдаче сообщений о причине прерывания, прекращении выполнения текущей программы и перехода к реализации другой программы либо, если дальнейшее функционирование системы невозможно, только в выдаче диагностического сообщения, локализующего причину отказа.

В любом случае, при наступлении события, вызвавшего аварию, процессор не останавливается.

Внешние прерывания. Эту группу прерываний представляют прерывания от внешних устройств. Обработка событий, связанных с выполнением операций обмена данными между внешними устройствами и ОЗУ, в конечном счете, сводится к запуску драйвера- программы, реализующей обмен с устройством конкретного типа (драйвер клавиатуры, драйвер монитора и т. п.).

Внепроцессорные прерывания. Прерывания, обработка которых приводит к передаче управления общей шиной от процессора к контроллеру внешнего устройства с реализацией дальнейшего обмена между устройством и основной памятью по Общей шине напрямую без посредничества процессора, то есть без запуска какого-либо драйвера (см. п. 10.4.).

7.2. Общая организация прерываний

Механизм прерывания обеспечивается соответствующими аппаратно-программными средствами компьютера.

Задачей аппаратных средствобработки прерывания в процессоре ЭВМ является приостановка выполнения одной программы (иногда называемой основной) и передача управления подпрограмме обработки прерывания.

Поскольку для выполнения подпрограммы обработки прерывания используются различные регистры процессора (РОНы, счетчик команд, регистр флагов и т.д.), то информацию, содержащуюся в них в момент прерывания, необходимо сохранить для последующего возврата в прерванную программу.

Обычно задача сохранения содержимого счетчика команд и регистра флагов, содержащего вектор состоянияпроцессора возлагается на аппаратные средства обработки прерывания. Сохранение содержимого других регистров процессора, используемых в подпрограмме обработки прерывания, производится непосредственно в подпрограмме (рис. 7.1).

7.3. Организация системы прерываний с использованием векторов     прерываний

Рассмотрим подробнее процесс обработки внешних прерываний.

Действия, выполняемые при этом процессором, как правило, те же, что и при обращении к обычной подпрограмме; различие в том, что при обращении к подпрограмме эти действия инициируются командой, а при обработке прерывания - управляющим сигналом от контроллера внешнего устройства, называемым Запрос(или Требование) прерывания.

 


Рис.7.1. Структура подпрограммы обработки прерывания и ее связь с основной программой

Эта важная особенность обмена с прерыванием программы позволяет организовать обмен данными с внешними устройствами в произвольные моменты времени, не зависящие от программы, выполняемой в ЭВМ. Таким образом, появляется возможность обмена данными с внешними устройствами в реальном масштабе времени, определяемом внешней по отношению к ЭВМ средой (например, с датчиками, следящими за состоянием технологического процесса).

Прерывание программы по требованию внешнего устройства не должно оказывать на прерванную программу никакого влияния, кроме увеличения времени ее выполнения за счет приостановки на время выполнения подпрограммы обработки прерывания.

Формирование сигналов прерываний – запросов внешних устройств на обслуживание, происходит в их контроллерах – электронных схемах, обеспечивающих связь с внешним устройством. Еще есть драйвер – программа, обеспечивающая обслуживание прерывания. В серийных ЭВМ обычно используется одноуровневая система прерываний, то есть сигналы Запрос прерыванияот всех внешних устройств поступают на один вход процессора. Поэтому возникает проблема идентификации внешнего устройства, запросившего обслуживание. Основным способом, решающим проблему идентификации в большинстве современных ЭВМ в настоящее время, является использование векторов прерываний.

Внешнее устройство, запросившее обслуживание, само идентифицирует себя с помощью адреса своего вектора прерывания - ячейки основной памяти, в которой хранится адрес начала программы обработки прерывания данного типа.

Векторы всех обработчиков прерываний собраны в единую таблицу векторов прерываний,располагающуюся в самых младших адресах оперативной памяти, имеющую объем 1 Кбайт и содержащую 4-х байтные элементы (векторы прерываний) для 256 обработчиков прерываний. Так как таблица всегда имеет нулевой начальный адрес и длину вектора в 4 байта, чтобы определить адрес вектора для прерывания типа i, достаточно просто умножить это значение на 4.

Вектор прерывания выдается контроллером не одновременно с запросом на прерывание, а только по разрешению процессора (рис.7.2).

Регистр прерываний составлен триггерами внешних устройств, устанавливаемыми в единичное состояние требованиями прерывания соответствующих контроллеров. Выходы триггеров поступают на входы приоритетного шифратора через элементы совпадения, вторые входы которых соединены с выходами регистра маски. Разряды этого регистра управляются ОС и устанавливаются в 0 при запрете прерывания соответствующего устройства и в 1, если прерывание разрешено.

 

Рис.7.2. Схема обработки требования прерывания от внешнего устройства. IEN – Interrupt Enable – прерывание разрешено; IST – Interrupt Status – статус прерывания; INTACK – подтверждение прерывания; VAD – вектор адреса прерывания.

При поступлении хотя бы одного требования прерывания на входы приоритетного шифратора он устанавливает в единичное состояние свой выход Е и устанавливает код приоритета прерывания на других своих выходах в соответствии с таблицей соответствия

I0 I1 I2 I3 Y X IST
X X X
X X
X

В регистре прерываний устройства подключены в соответствии с их приоритетами. Чем выше приоритет, тем на меньший по значению вход приоритетного шифратора он поступает. Поэтому при одновременном поступлении требований прерывания от нескольких внешних устройств будет обрабатываться требование от устройства с высшим приоритетом. В начале оперативной памяти расположена таблица векторов прерываний. В каждой ячейке этой таблицы расположена команда безусловного перехода на начальный адрес соответствующей устройству программы обслуживания прерывания (ПОП).



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.