Хелпикс

Главная

Контакты

Случайная статья





Зарщиков А.М. 3 страница



В настоящее время применяются три варианта формул соответственно трем теориям прочности.

1. Первая теория называется: "Теория наибольших касательных напряжений". Эта теория позволяет рассчитать эквивалентное напряжение для сложнонапряженного состояния упруго-пластичных материалов. К таким материалам относятся большинство среднеуглеродистых не легированных и мало легированных сталей.

.

Эквивалентное напряжение  - нормальное расчетное напряжение, к которому приведены совместные действия всех других напряжений (и нормальных и касательных). Это напряжение ( ) уже можно сравнивать с предельными значениями нормальных напряжений  и  по справочнику "Сопромата", как в простых случаях нагружения (см. лекцию № 5).

Если в расчете берутся максимальные напряжения  и , то  будет максимальным и будет равно допускаемому напряжению ( = ). Таким образом можно производить проектный и проверочный расчет для сложнонапряженного нагружения деталей.

2. "Теория наибольших энергий формообразования (энергетическая)"

Позволяет определить эквивалентное напряжение  для пластических материалов:

.

К пластическим материалам относятся малоуглеродистые не легированные стали, цветные металлы и т.д.

3. "Теория Мора"

Позволяет определить эквивалентное напряжение для хрупких материалов:

.

К – коэффициент, зависящий от предела прочности на растяжение и предела прочности на сжатие. . У хрупких материалов, например у чугунов, предел прочности на сжатие может быть выше, чем на растяжение (из чугуна не рекомендуется делать растяжки). В справочнике указаны обе величины.

К хрупким относятся кроме чугуна еще высоко углеродистые не легированные и легированные стали с упрочнением (закалка, цементация, азотирование и т.д.)

Если у материала по справочнику предел прочности один, то коэффициент К = 1 и формула по теории Мора превращается автоматически в формулу по первой теории.

Методы определения допускаемых напряжений (коэффициента запаса прочности)

На стадии проектирования конструктору приходится "закладывать" в деталь запас прочности (коэффициент запаса прочности), или знать, какое принять допускаемое напряжение, что по сути одно и то же.

Если допускаемое напряжение получится маленьким (большой коэффициент запаса прочности), тогда деталь получится дорогой, что особенно скажется в условиях массового производства. Если же допускаемое напряжение большое (коэф. зап. маленький), то возможное разрушение приведет к катастрофе.

1. Табличный метод

В условиях крупносерийного и массового производства используется статистический опыт производства оформленный в таблицы. Таблицы составляют для определенной формы детали, которая давно освоена на этом производстве и имеются наблюдения за ее эксплуатацией.

В начале перед таблицей изображается форма детали. И только для этой формы составляется таблица на основе статистических данных.

Пример таблицы:

 

мПа

мПа

мПа

Допускаемое напряжение

Постоянная нагрузка Пульсирующ. нагрузка Переменная нагрузка
Ст 15 120-140 100-130 85-100
Ст 45 170-200 130-175 100-130

      Если существенно меняется форма детали или технология ее производства, то применять таблицу уже нельзя.

2. Метод по эмпирическим формулам

При единичном производстве можно применять для определения допускаемых напряжений (коэффициента запаса прочности) формулы, которые дают грубые значения заранее завышенные коэф. зап. прочн. В качестве примера показана таблица для углеродистой и легированной сталей:

Режим

работы

Характер

нагружения

Допускаемое напряжение и КЗ

КЗ КЗ
Постоянная 0,33 0,2
Пульсирующая 0,16 6,3 0,1
Знакопеременная 0,09 11,1 0,06 16,7

Первый и второй методы используют фиксированные значения КЗ, однако для каждой детали должен быть свой коэффициент с учетом особенностей ее работы.

Если производство не массовое и дорогое (например, авиастроение), требуется очень точное значение КЗ изначально.

3. Дифференциальный метод определения коэффициента запаса прочности (допускаемого напряжения)

Этот метод точный. По нему величина КЗ определяется путем перемножения ряда частных коэффициентов запаса прочности. Каждому частному коэффициенту посвящены глубокие научные изыскания (Одинг И.Л. "Допускаемые напряжения в машиностроении и циклическая прочность металлов", М., Машгиз, 1962).

В зависимости от степени ответственности рассчитываемой детали частных коэффициентов К1, К2 и т.д. может быть до десяти.

Первые пять коэффициентов называются коэффициентами общего значения:

К1 – учитывает степень ответственности детали;

К2 – учитывает надежность материала и его характеристик с зависимости от метода изготовления (для проката – 1,1, для литья – 1,3 и т.д.);

К3 – точность используемых формул или методик расчета напряжений в детали;

К4 – наличие концентраторов напряжений;

К5 – вид нагружения (постоянная, пульсирующая, знакопеременная);

Для малоответственных расчетов достаточно использовать коэффициенты этой группы (часть из них или все пять). Если использовать только первую группу коэффициентов, то коэффициент запаса КЗ будет иметь значения от 1,7 до 2,0. Для ответственных расчетов добавляют коэффициенты из второй группы (с шестого по десятый). Их называют коэффициентами специального значения:

К6 – учитывает метод определения предельных характеристик прочности (  и );

К7 – учитывает размеры детали (возможные внутренние трещины и пузыри воздуха в крупных заготовках);

К8 – шероховатость поверхности после обработки;

К9 – дополнительные напряжения от термообработки;

К10 – дополнительные напряжения при сборке.

Если перемножить друг на друга только коэффициенты второй группы (коэффициенты специального значения), хотя использовать их без первых пяти нельзя, то получится от 2,5 до 5,0.

Таким образом, при использовании всех десяти коэффициентов можно получить Кзап = 4,25…10.

 

ЛЕКЦИЯ № 7

Назначение сцепления

1 ДВС
3 КП
2 Сцепление
4 Карданная передача
6 Дифференциал
5 Главная передача
  7 Полуоси
8 Ведущие колеса

 

Двигатель внутреннего сгорания (ДВС) 1 предназначен для перевода тепловой энергии сгорающего газа в механическую энергию вращения маховика. Далее, как и в любом механическом приводе, между источником механической энергии и трансмиссией устанавливается предохранительная муфта (в данном случае фрикционная) для защиты от перегрузок. У автомобиля эта муфта называется сцеплением 2. Далее следует коробка передач (КП) 3, карданная передача 4, главная передача 5, дифференциал 6, полуоси 7 и ведущие колеса 8.

Сцепление

Сцепление является первым узлом трансмиссии автомобиля и, как уже говорилось, предназначено для защиты ДВС и трансмиссии от перегрузок. Кроме того сцепление служит для:

- кратковременного отключения двигателя от трансмиссии (при переключении передач, торможении и т.д.);

- последующего их плавного соединения (после включения передачи или при трогании с места);

- ограничения амплитуд крутильных колебаний в трансмиссии;

- ограничения динамических нагрузок в трансмиссии.

Классификация сцепления

По принципу передачи крутящего момента:

1. Фрикционные (на автомобилях применяют в основном сцепления такого типа).

2. Гидродинамические (гидромуфта или гидротрансформатор на автомобилях с гидромеханической коробкой передач). Такие применяются на автобусах ЛиАЗ или иномарках.

3. Электромагнитные (на автомобилях с ручным управлением для инвалидов).

 Фрикционные в свою очередь делятся по форме фрикционных поверхностей на:

1. Конические (сейчас не применяются, т.к. работает не стабильно, подклинивает).

2. Цилиндрические, или барабанные (на снегоходах для автоматического включения от центробежного эффекта).

3. Дисковые (основной тип).

Дисковые делятся по числу ведомых дисков на:

1. Однодисковые (на автомобилях с малым крутящим моментом).

2. Двухдисковые (при передаче большого момента).

3. Многодисковые (на мотоциклах из-за высокой компактности).

Одно и двухдисковые работают с сухими дисками, а многодисковые – в масляной ванне для стабильной работы (их трудно гарантированно развести при выключении, поэтому диски обильно смазаны маслом, чтобы сцепление не вело).

Наиболее распространенным способом сжатия фрикционных дисков является усилие от предварительно сжатых пружин.

По расположению пружин сцепления бывают:

1. С центральной пружиной (особенно у легковых автомобилей сцепление с центральной диафрагменной пружиной).

2. С периферийными пружинами (сейчас в основном на грузовых).

Сами пружины по форме делятся на :

1. Витые цилиндрические (обычные пружины сжатия).

2. Витые конические (применяются редко).

3. Диафрагменные (тарельчатые) периферийные или центральная.

По механизму управления (приводу):

1. С механическим приводом.

2. Гидравлическим.

3. Вакуумным.

4. Пневматическим.

5. Электрическим.

6. Комбинированным.

Все эти варианты могут быть с усилителем или без него.

Сцепление с периферийными цилиндрическими пружинами

В нормальном состоянии ведомый диск с фрикционными накладками 5 зажат между маховиком 2 и нажимным диском 6 силою предварительно сжатых периферийных пружин 7 (см. рис.). В этом случае крутящий момент от двигателя передается маховиком 2 посредством трения сразу на ведомый диск 5 и вторым путем - через маховик 2 на кожух 4, нажимной диск 5 и также на ведомый диск 5, но уже справа. С ведомого диска момент через шлицевую втулку ведомого диска попадает на шлицы первичного вала коробки передач 9 (первичный вал слева имеет подшипниковую опору 1 в маховике 2).

Для выключения сцепления (отсоединения двигателя от трансмиссии), водитель ногой нажимает на педаль 11. Жидкость выталкивается из главного цилиндра 12 и по трубопроводу 15 давит на поршень рабочего цилиндра 16, перемещая нижний конец вилки 14 вправо. Вокруг опоры 13 верхний конец вилки 14 перемещает влево выжимной подшипник 8 (упор ный шариковый). Подшипник проходит зазор между собой и головкой рычага 10 и надавливает на рычаг 10 влево.

РН

Рычаг 10 поворачивается вокруг опоры 17, закрепленной на кожухе 4. Нижний конец рычага 10 перемещается вправо вместе с прикрепленным к нему нажимным диском 6. Ведомый диск 5 освобождается (нет прижатия – нет и трения – нет передачи крутящего момента).

Все сцепление закрыто снаружи картером (корпусом) 3, который слева крепится к картеру двигателя, а справа - к картеру коробки передач. Упругая характеристика сцепления с периферийными пружинами:

fраб
 Δfизнос
 Δfвыкл.
PН
Pизнос
Pвыкл.

Чтобы через ведомый диск прошел максимальный момент  двигателя без относительной пробуксовки, диски необходимо сжать силой PН. Для этого периферийные пружины должны быть предварительно сжаты на fраб. Характеристика витых цилиндрических пружин линейная. Такая характеристика имеет два недостатка в сцеплении. При износе фрикционных накладок ведомого диска сцепления он становится тоньше, нажимной диск на величину износа накладок Δfизнос приближается к маховику. На эту же величину Δfизнос уменьшается предварительная деформация пружин и их усилие на нажимной диск становится меньшим (Pизнос). Поскольку уменьшается сила прижатия – уменьшается и сила трения между дисками и возможна пробуксовка дисков при передаче большого крутящего момента двигателя. Вторым недостатком является увеличение усилия пружин при выключении сцепления. Рычаги отводят нажимной диск от ведомого на величину Δfвыкл.. Деформация пружин возрастает на эту же величину. Сила, создаваемая пружинами также возрастает по линейному закону до значения Pвыкл. И это большое усилие приходится, по сути, создавать ногой водителю.

Указанные недостатки можно устранить, используя в сцеплении диафрагменную пружину 4.

Сцепление с диафрагменной пружиной

РН

В таком сцеплении диафрагменная пружина 4 своим наружным диаметром давит на нажимной диск 2, создавая нужное усилие прижатия дисков PН. Упирается пружина в кожух 1 с помощью многочисленных опор 6.

При выключении выжимной подшипник 5 перемещается влево, надавливает на диафрагменную пружину по ее внутреннему диаметру. Пружина деформируется вокруг опор 6 и ее наружный диаметр отходит вправо, оттаскивая за крючок 3 нажимной диск от ведомого.

Преимущества использования центральной диафрагменной пружины не только в отсутствии рычагов выключения, но, главное, в нелинейной характеристике такой пружины.

Если наложить на упругую характеристику периферийных цилиндрических пружин характеристику диафрагменной, то преимущества обозначатся наглядно:

fраб
 Δfизнос
Δfвыкл.
PН
Pизнос
Pвыкл.
P'износ
.Характеристика диафрагмен. пружины
P'вык.

При износе накладок диафрагменная пружина также уменьшает деформацию на Δfизнос. Однако, сила нажатия PН падает незначительно до величины P'износ (см. пунктирные стрелки). Это означает, что вероятность пробуксовки дисков также незначительна.

Второе преимущество проявляется при выключении. Как видно из графика, при дополнительной деформации диафрагменной пружины на величину Δfвыкл. усилие пружины не растет, а даже падает до P'выкл. (см. пунктирную стрелку).

Ведомый диск сцепления нужно сжимать с такой силой PН, чтобы созданный момент трения между дисками превышал передаваемый через сцепление момент двигателя. Иначе будет пробуксовка дисков между собой. Величина, показывающая, на сколько момент трения между дисками сцепления МСЦ больше максимального момента двигателя Ме max называется коэффициентом запаса сцепления β.

β = МСЦ / Ме max

β = 1,2 – 1,25 для легковых автомобилей (момент трения превышает максимальный момент двигателя на 20 – 25 %).

β = 1,5 – 1,8 для грузовых.

β = 2,0 – 2,5 для автомобилей повышенной проходимости.

 

ЛЕКЦИЯ № 8

Специальные требования, предъявляемые к сцеплению и способы их выполнения

 

1. Быстрое и полное выключение сцепления.

 Если сцепление выключается не полностью (сцепление "ведет"), то очень трудно или невозможно переключить передачи. Если сцепление не быстро отключает двигатель от трансмиссии, то двигатель мешает процессу торможения, особенно в экстренных случаях.

Выполняется это требование путем:

1) Ограничением рабочего хода педали сцепления до 160 – 180 мм у легковых и 180 – 200 мм у грузовых автомобилей.

2) Ограничением свободного хода по педали до 35 – 40 мм, что соответствует 1 – 5 мм зазору между выжимным подшипником и головками рычагов отвода нажимного диска (или до диафрагменной пружины).

Первые два пункта обеспечивают быстроту выключения. Следующие пункты обеспечивают полноту (чистоту) выключения:

3) Наличие гарантированных зазоров между поверхностями трения (между накладками ведомого диска и маховиком, и нажимным диском). Зазоры должны быть у однодискового сцепления на каждую сторону по 1 – 1,2 мм, у двухдискового сцепления - 0,25 – 0,5 мм. Выдержать гарантированно такой маленький зазор у двухдискового сложно. Для этого в двухдисковых сцеплениях существуют специальные устройства.

На рисунке показано устройство похожее на подпружиненную вертушку, которая всегда стремится силою внутренней пружины повернуться против часовой стрелки. При выключении сцепления крайний нажимной диск отводится рычагами, а средний, отталкиваясь от него и маховика рассматриваемым устройством, всегда выставляется ровно между ними. Таким образом зазоры выставляются принудительно и гарантированно.

 

Маховик
Средний нажимной диск
Крайний нажимной диск
Устройство, разводящее диски

4) Головки рычагов выключения выставляются в одну плоскость, параллельную выжимному подшипнику.

Регулируемая опора рычага
Не правильно установлен рычаг

На рисунке нижний рычаг больше удален от выжимного подшипника. При выключении в таком случае сначала отойдет верхний край нажимного диска, и лишь затем выжимной подшипник подойдет к нижнему рычагу. В итоге нажимной диск встанет с перекосом и будет одним краем (здесь – нижним) задевать ведомый, передавая через это касание небольшой момент от работающего двигателя. Такого касания достаточно, чтобы сделать невозможным переключение передач в КП.

Исправить положение можно регулировкой опоры рычага, чтобы его головка встала в общую плоскость, отмеченную пунктирной линией на рисунке.

 

2. Плавное соединение дисков при включении.

Здесь имеется ввиду относительно плавное соединение дисков, когда нога водителя соскользнула с педали сцепления и мощные нажимные пружины устремляют нажимной диск на ведомый. Если ничего не предусмотреть, нажимной диск ударит по ведомому. В этот момент сила прижатия дисков будет очень большой, значит большим будет момент трения и сцепление уже не сработает, как защитное устройство (особенно такая ситуация опасна при трогании с места после включения первой передачи в КП).

Для смягчения соединения дисков можно ведомый диск сделать упругим, так чтобы сила нажатия дисков друг на друга вырастала не мгновенно, а по мере деформации упругого ведомого диска.

Чтобы ведомый диск был упругим можно использовать один из вариантов:

1) Разрезать стальной закаленный ведомый диск на секторы и отогнуть их в разные стороны. Фрикционные накладки приклепываются к отогнутым в одну сторону секторам.

А
Вид А

Недостатком такого способа является возможность образования трещин по основанию секторов.

 

2) Приклепать к ступице ведомого диска волнистые секторы:

А
Вид А

3) Приклепать к ведомому диску стальные пружины:

А
Вид А

Чтобы уменьшить силу удара в момент соединения дисков лучше иметь диафрагменную пружину, так как в выключенном состоянии такая пружина меньше наращивает усилие, чем периферийные витые (см. характеристику диафрагменной пружины).

Можно вообще затормозить процесс включения, например гидравлическим сопротивлением в приводе. Если внутренний диаметр трубопровода гидравлического привода уменьшить, то при включении жидкость из рабочего цилиндра будет медленнее перетекать в главный замедляя процесс включения. Внутренний диаметр трубопровода не должен превышать трех миллиметров.

 

 

3. Ограничение амплитуд крутильных колебаний (Демпфер крутильных колебаний).

Все детали двигателя, участвующие во вращении обладают достаточно большой массой. Эта масса посредством валов трансмиссии (валы коробки передач + карданный вал + полуоси) соединена через ведущие колеса с самим автомобилем. Получаем как бы два маховика по концам объединенного упругого вала трансмиссии. Такая система представляет собой колебательный контур крутильных колебаний с фиксированными собственными частотами.

Если с частотой собственных крутильных колебаний трансмиссии совпадет (или будет кратна ей) частота внешняя, например вращения валов трансмиссии или колебания подвески на неровностях дороги, то в трансмиссии возникнет резонанс крутильных колебаний. Углы закручивания валов будут расти, напряженность работы деталей резко увеличится.

Собственная частота крутильных колебаний определяется по формуле:

 , где с – крутильная жесткость трансмиссии; J – момент инерции маховой массы двигателя или автомобиля.

Если в момент возникновения резонанса изменить собственную частоту крутильных колебаний трансмиссии ω путем изменения жесткости трансмиссии с, условия развития резонанса устранятся (не будет совпадения собственных частот с вынужденными).

На практике при появлении резонанса крутильную жесткость трансмиссии меняют демпферные пружины.

Ведомый диск состоит из венца с фрикционными накладками 2 и ступицы 1 с приваренной шлицевой втулкой 9. Фрикционные накладки снимают момент с маховика и нажимного диска, а шлицевая втулка 9 отправляет его в КП, поскольку располагается на первичном валу КП.

Венец 2 на рисунке проходит за ступицей 1, не доходя до шлицевой втулки 9. Венец имеет окна (позиция 3 и напротив) точно совпадающие по длине с вырезами 5 в ступице 1. Эти окна совмещаются и в них вставляются пружины. Торцами пружины перекрывают оба диска 1 и 2, как показано на поперечном разрезе ведомого диска:

 

Δ
Δ

 

Момент двигателя от маховика и нажимного дисков посредством трения о накладки передается на венец нажимного диска 2. Далее с венца момент передается через окно 3, пружину 4, вырез 5 на ступицу 1 и приваренную к ней шлицевую втулку 9. Одновременно с пружиной 4 работает пружина 10 с противоположной стороны. Пружины 7 и 11 в работу не вступают так как между их торцами и окном в венце имеется зазор ∆, который больше, чем деформация пружин 4 и 10.

При появлении вынужденной частоты, равной или кратной собственной возникает резонанс. Амплитуда крутильных колебаний (углы закручивания) увеличивается, зазор Δ перед пружинами 7 и 11 выбирается и они вступают в работу параллельно уже работающим пружинам 4 и 10. Общая крутильная жесткость трансмиссии с из-за добавочных пружин 7 и 11 увеличивается, а значит увеличивается собственная частота крутильных колебаний всей трансмиссии ω (смотри формулу). Новая собственная частота перестает совпадать с вынужденной, которая вызвала резонанс, условия резонанса устраняются. Таким образом, специальная установка демпферных пружин приводит к переменной крутильной жесткости трансмиссии, что в свою очередь позволяет уйти от резонансных частот.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.