Хелпикс

Главная

Контакты

Случайная статья





Катионы (мэкв/л) 4 страница



При поступлении в кровь ионов H+ (т.е. кислоты) ионы бикарбоната натрия взаимодействуют с ней и образуется угольная кислота:

При работе бикарбонатной системы концентрация водородных ионов понижается, т.к. угольная кислота является очень слабой кислотой и плохо диссоциирует. При этом в крови не происходит параллельного значимого увеличения концентрации НСО3

Если в кровь поступают вещества с щелочными свойствами, то они реагируют с угольной кислотой и образуют ионы бикарбоната:

Работа бикарбонатного буфера неразрывно связана с дыхательной системой (с вентиляцией легких). В легочных артериях благодаря присутствию в эритроцитах фермента карбоангидразы, угольная кислота быстро расщепляется с образованием CO2, удаляемого с выдыхаемым воздухом:

Н2СО3→ Н2О + СО2

Кроме эритроцитов, значительная активность карбоангидразы отмечена в эпителии почечных канальцев, клетках слизистой оболочки желудка, коре надпочечников и клетках печени, в незначительных количествах – в центральной нервной системе, поджелудочной железе и других органах.

Гемоглобиновая буферная система

Высокой мощностью в крови обладает гемоглобиновый буфер, на него приходится до 28% всей буферной емкости крови. В качестве кислой части буфера выступает оксигенированный гемоглобин H‑HbO2. Он имеет выраженные кислотные свойства и в 80 раз легче отдает ионы водорода, чем восстановленный Н‑Нb, выступающий как основание. Гемоглобиновый буфер можно рассматривать как часть белкового, но его особенностью является работа в тесном контакте с бикарбонатной системой.

Изменение кислотности гемоглобина происходит в тканях и в легких и вызывается связыванием соответственно H+ или О2. Непосредственный механизм заключается в присоединении или отдаче иона H+ остатком гистидина в глобиновой части молекулы (см эффект Бора).

В тканях более кислый pH является результатом накопления минеральных (угольной, серной,соляной) и органических кислот (молочной). Ионы H+ присоединяются к пришедшему оксигемоглобину (HbО2) и превращают его в H‑HbО2. Это моментально вызывает отдачу оксигемоглобином кислорода (эффект Бора) и он превращается в восстановленный H‑Hb.

НbO2+ Н+ → [H-HbO2] → Н-Hb + O2

В результате снижается количество Н2СО3, продуцируются ионы НСО3 и тканевое пространство подщелачивается.

В легкихпосле удаления СО2 (угольной кислоты) происходит защелачивание крови. При этом присоединение О2 к дезоксигемоглобину H-Hb образует кислоту более сильную, чем угольная. Она отдает свои ионы Н+ в среду, предотвращая повышение рН:

Н-Hb + O2 → [H-HbO2] → НbO2 + Н+

Работу гемоглобинового буфера обычно рассматривают в связи с бикарбонатныым буфером:

Эффективность гемоглобинового буфера напрямую зависит от активности дыхательной системы (Газобмен в легких и тканях).

Длительная стабилизация сдвигов рН

Медленная компенсация сдвигов величины pH обеспечивается физиологическими системами - регулируемо через легкие и почки, пассивно при участии костной ткани и печени.

Удаление кислоты через легкие

Газообмен в легких заключается в постоянном обмене кислородом и углекислым газом между двумя соприкасающимися компартментами – легочными альвеолами и кровеносными капиллярами. (см также Обмен кислорода и углекислого газа в легких)

Углекислый газ быстро диффундирует из плазмы и эритроцитов в альвеолярное пространство. В то же время в альвеолярном воздухе имеется высокая концентрация кислорода, который, проникая в эритроциты, вытесняет СО2 из комплекса с гемоглобином с образованием оксигемоглобина – более сильной кислоты, чем угольная. "Кислый" оксигемоглобин отдает ионы Н+ в ассоциацию с ионом HCO3, образуется H2CO3, которая вступает в карбоангидразную реакцию с появлением СО2, удаляемого в плазму и далее в альвеолы.

Легочная вентиляция обеспечивает удаление H2CO3 и повышение уровня pH. Она эффективна только в тесном контакте с гемоглобиновой и бикарбонатной буферной системами.

Главным фактором для активации дыхательной системы является концентрацияионов Н+, влияющих на рецепторы в каротидных тельцах. Закисление крови уже через 1‑2 минуты вызывает стимуляцию дыхательного центра, повышая его активность в 4‑5 раз. Снижение кислотности крови понижает активность дыхательного центра в 2‑4 раза.

Чувствительные хеморецепторы для CO2 находятся в продолговатом мозге, аортальном и каротидных тельцах.

Сдвиги концентрации O2в крови не являются существенными для изменения легочной вентиляции. Но в случае хронической гиперкапнии (увеличении CO2) рецепторы дыхательного центра теряют чувствительность к CO2 (десенсибилизация) и низкое pO2 становится основным стимулом. Также избирательное снижение кислорода в артериальной крови на 40% от нормы стимулирует активность дыхательного центра.

Удаление кислоты через почки

Почки играют ведущую роль в регуляции уровня рН плазмы крови. Движущей силой в почечных влияниях на уровень pH являются потоки ионов Na+. Ионы Na+ перемещаются внутрь клеток по концентрационному градиенту, который создается при работе фермента Na++‑АТФазы на базолатеральной мембране. Движение ионов Na+ внутрь клетки приводит к выходу через Na+/H+‑обменник в просвет канальца ионов H+.

Благодаря почкам регулируется концентрация ионов HCO3 в плазме крови и ионы Н+ удаляются в мочу. Благодаря работе почек рН мочи в состоянии снижаться до 4,5-5,2. Здесь активно протекают три процесса, связанных с уборкой кислых эквивалентов:

1. Реабсорбция бикарбонатных ионов HCO3-.

2. Ацидогенез – удаление ионов Н+ с титруемыми кислотами (в основном в составе дигидрофосфатов NaH+PO4).

3. Аммониегенез – удаление ионов Н+ в составе ионов аммония NH4+.

Реабсорбция бикарбонат-ионов

Ионы HCO3, находящиеся в плазме крови, непрерывно фильтруются и оказываются в первичной моче. Одновременно в канальцевую жидкость при участии Na+/H+‑обменника из эпителиоцитов активно выводятся ионы H+ в обмен на ионы Na+.

Секретируемые ионы Н+ и ионы HCO3, находящиеся в первичной моче, ассоциируют до угольной кислоты Н2СО3, которая распадается на СО2 и H2O. Используя возникающий градиент концентрации между просветом канальцев и цитозолем эпителиоцитов, СО2 диффундирует в клетки. Внутриклеточная карбоангидраза направляет входящий СО2 для образования угольной кислоты. После диссоциации кислоты ионы НСО3 выносятся в кровь, подщелачивая ее, ионы Н+ секретируются обратно в мочу. В итоге происходит обратное всасывание ионов НСО3, при этом каждый добавляемый в плазму НСО3 соответствует экскреции одного иона Н+.

Реабсорбция бикарбонат-ионов

Пороговое значение реабсорбции бикарбонатов соответствует их нормальной концентрации в крови. Это значит, что при превышении нормального уровня бикарбонаты не будут реабсорбироваться и окажутся в моче.

В проксимальных канальцах реабсорбируется 80% профильтрованного НСО3. В целом в почечных канальцах происходит реабсорбция более 99% от фильтруемого бикарбонат-иона.

Ацидогенез

Ацидогенез заключается во взаимодействии ионов H+, секретируемых из эпителиоцитов, с анионами HРO42–. В результате в первичной моче образуется дигидрофосфат H2РO4.

Реакции ацидогенеза

В процессе ацидогенеза в сутки выделяется 10-30 ммоль кислотных веществ, названных титруемыми кислотами. Фосфаты, являясь одной из этих кислот, играют роль буферной системы в моче. Роль ее состоит в экскреции кислых эквивалентов без потерь бикарбонат-ионов за счет дополнительного иона H+ в составе выводимого H2РO4 (по сравнению с HCO3):

HРO42– + Н2СО3 → H2РO4 + НСО3

Бикарбонат натрия в почечных канальцах реабсорбируется, а кислотно-основная реакция мочи зависит только от содержания дигидрофосфата. Хотя в крови соотношение HРO42–/ H2РO4 равно 4:1, начиная от клубочкового фильтрата к дистальным канальцам оно может достигать 50-кратного перевеса доли ионов H2РO4 (1:50).

Аммониегенез

Глутамин и глутаминовая кислота, попадая в клетки канальцев, быстро дезаминируются глутаминазой и глутаматдегидрогеназой с образованием аммиака. Являясь гидрофобным соединением, аммиак диффундирует в просвет канальца и связывает экскретируемые ионы Н+ с образованием иона NH4+ , который удаляется с мочой.

Реакции аммониегенеза

Аммониегенез происходит на протяжении всего почечного канальца, но более активно идет в дистальных отделах – дистальных канальцах и собирательных трубочках коркового и мозгового слоев. В этих сегментах секреция ионов Н+ происходит активно с участием Н+‑АТФазы, локализованной на апикальной мембране эпителиоцита.

Влияние костной ткани

Это наиболее медленнореагирующая система. Механизм ее участия в регуляции рН крови состоит в возможности обмениваться с плазмой крови ионами Са2+и Na+в обмен на протоны Н+. Происходит растворение гидроксиапатитных кальциевых солей костного матрикса, освобождение ионов Са2+ и HPO42–. В дальнейшем ионы HPO42– попадут в мочу и свяжутся с Н+ с образованием дигидрофосфата (ацидогенез), который и уходит с мочой.

+ + Ca10(PO4)6(OH)2 → 2H2O + 10Ca2+ + 6HPO42–

Параллельно при снижении рН (закисление) происходит поступление ионов H+ внутрь остеоцитов, а ионов K+ – наружу.

Роль печени

Существенную, но пассивнуюроль в регуляции кислотно-основного состояния крови берет на себя печень, в которой происходит метаболизм низкомолекулярных органических кислот (молочная кислота и др). Кроме этого, кислые и щелочные эквиваленты выделяются с желчью.

Анионы крови связывают протоны

Буферные основания

Общим показателем, характеризующим КОС, является концентрация буферных оснований (buffer bases, ВВ), включающая сумму всех оснований крови, хотя большую часть этих оснований представляют анионы бикарбоната и белковые анионы.

Более узким показателем является концентрация бикарбонат-ионов. При дыхательных нарушениях количество бикарбонатов мало изменяется, т.к. угольная кислота, образуемая из CO2, очень плохо диссоциирует и изменение ее концентрации не влияет на содержание иона HCO3. Но, например, при накоплении в крови метаболических кислот (молочной кислоты) ион HCO3 будет активно расходоваться на их буферизацию, показатель снизится.

На практике главным и наиболее информативным показателем служит избыток буферных оснований (base excess, BE). Изменение величины BE отражает степень использования буферных оснований для удержания гомеостаза при смещении уровня ионов H+. При алкалозе использование буферных оснований не требуется, показатель возрастает. При закислении среды основания расходуются и показатель BE снижается, т.е. возникает дефицит оснований.

Остаточные анионы

Если посчитать сумму всех ионных зарядов в плазме крови, будет обнаружено, что количество положительных зарядов равно количеству отрицательных зарядов.

Катионы (мэкв/л)



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.