|
|||
Вариант № 25531587. Задание 1 № 509827. Решение.. Задание 2 № 26870. Решение.. Задание 3 № 520689. Решение.. Задание 4 № 510117. Решение.. Приведем другое решение.Стр 1 из 4Следующая ⇒ Вариант № 25531587 1. Задание 1 № 509827 Бегун пробежал 250 м за 36 секунд. Найдите среднюю скорость бегуна на дистанции. Ответ дайте в километрах в час. Решение. Чтобы перевести метры в секунду в километры в час нужно умножать на 3,6. Скорость бегуна 250/36 м/c, она равна
Ответ: 25. 2. Задание 2 № 26870 На рисунке показано изменение температуры воздуха на протяжении трех суток. По горизонтали указывается дата и время суток, по вертикали — значение температуры в градусах Цельсия. Определите по рисунку разность между наибольшей и наименьшей температурой воздуха 15 июля. Ответ дайте в градусах Цельсия. Решение. Из графика видно, что 15 июля наибольшая температура составляла 21 °C, а наименьшая 8 °C. Их разность составляет 13 °C.
Ответ: 13. 3. Задание 3 № 520689 На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь. Решение. Площадь треугольника равна разности площади прямоугольника и трех прямоугольных треугольников, гипотенузы которых являются сторонами исходного треугольника. Поэтому см2.
Ответ: 17. 4. Задание 4 № 510117 В торговом центре два одинаковых автомата продают кофе. Обслуживание автоматов происходит по вечерам после закрытия центра. Известно, что вероятность события «К вечеру в первом автомате закончится кофе» равна 0,25. Такая же вероятность события «К вечеру во втором автомате закончится кофе». Вероятность того, что кофе к вечеру закончится в обоих автоматах, равна 0,15. Найдите вероятность того, что к вечеру дня кофе останется в обоих автоматах. Решение. Рассмотрим события А = кофе закончится в первом автомате, В = кофе закончится во втором автомате. Тогда A·B = кофе закончится в обоих автоматах, A + B = кофе закончится хотя бы в одном автомате. По условию P(A) = P(B) = 0,25; P(A·B) = 0,15.
События A и B совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения: P(A + B) = P(A) + P(B) − P(A·B) = 0,25 + 0,25 − 0,15 = 0,35. Следовательно, вероятность противоположного события, состоящего в том, что кофе останется в обоих автоматах, равна 1 − 0,35 = 0,65.
Ответ: 0,65.
Приведем другое решение. Вероятность того, что кофе останется в первом автомате равна 1 − 0,25 = 0,75. Вероятность того, что кофе останется во втором автомате равна 1 − 0,25 = 0,75. Вероятность того, что кофе останется в первом или втором автомате равна 1 − 0,15 = 0,85. Поскольку P(A + B) = P(A) + P(B) − P(A·B), имеем: 0,85 = 0,75 + 0,75 − х, откуда искомая вероятость х = 0,65.
|
|||
|