|
|||
Дененің ауырлық центрінің координаталарын анықтау әдістері ⇐ ПредыдущаяСтр 5 из 5 Дененің ауырлық центрінің координаталарын анықтау әдістері 1. Симметрия әдісі. Егер біртекті дененің симметрия жазықтығы, симметрия өсі, не симметрия центрі бар болса, онда ол дененің ауырлық центрі симметрия жазықтығында, немесе симметрия өсінде, немесе симметрия центрінде жатады. Мысалы, біртекті дененің симметрия жазықтығы оны екі бөлікке бөледі. Олардың ауырлық күштері тең, сондықтан тең әсерлі күш аталған күштердің дәл ортасында, яғни симметрия жазықтығында жатады. PP P 2 1 R 2. Бөлшектеу әдісі. Егер берілген дененің пішіні күрделі болса, онда оны ауырлық центрлері оңай табылатын бірнеше бөлшекке бөлеміз де, бүкіл дененің ауырлық центрінің координаталарын (1.8.7) – (1.8.10) өрнектерімен санаймыз. Бұл жерде қосылғыштардың саны дене бөлінген бөлшектердің санына тең. 3. Теріс массалар әдісі. Бұл әдісті бөлшектеу әдісінің бір түрі деуге болады. Бұл әдісті қуысты денелердің ауырлық центрін анықтауда пайдаланады. Мұндай жағдайда қуыстарды теріс таңбалы көлемдер немесе аудандар деп есептейміз. 4. Интегралдау әдісі. Егер денені ауырлық центрлері оңай табылатын бөлшектерге бөлуге болмаса, онда оны өте кіші элементар көлемдерге бөледі. Олар үшін (1.8.8) өрнек мына түрге келеді 5. Эксперименталдық әдіс. Күрделі формалы біртекті емес денелердің ауырлық центрін табу үшін, денені (самолет, паровоз және т.б.) сым арқанмен оның әртүрлі нүктелерінен іліп қою әдісін пайдаланады. Дене ілінген жіп бағыты ауырлық күшінің бағытын береді. Осы сызықтардың қиылысқан нүктесі дененің ауырлық центрі болады. 1.Үшбұрыш ауданының ауырлық центрі. 1.33 суреттегі үшбұрышы ауданын қабырғасына параллель түзу сызықтармен жіңішке жолаққа бөлейік. Әр жолақтың ауырлық центрі оның ортасында болады. Олай болса үшбұрыш ауданының ауырлық центрі медианасында жатады. Қалған екі медиана үшін де дәл осындай нәтиже аламыз. Демек, біртекті үшбұрыш ауданының ауырлық центрі (С нүктесі) оның медианаларының қиылысу нүктесінде жатады екен. 2. Шеңбер доғасының ауырлық центрі. Центрі О нүктесінде болатын, радиусы R, орталық бұрышы -ға тең АВ шеңбер доғасын қарастырайық. Симметрия өсі бар болғандықтан доғаның ауырлық центрі осы өсте жатады (1.34 сурет). Ауырлық центрінің координатасын (1.8.13) өрнектерді қолданып табамыз. Ол үшін АВ доғасының бойынан орны бұрышымен анықталатын, ұзындығы элементті бөлеміз. Бұл элементтің х координатасы: . Енді х пен -дің мәндерін (1.8.14) өрнектерінің біріншісіне қойып, доғаның ұзындығы бойынша интеграл аламыз. 3. Дөңгелек сектор ауданының ауырлық центрі. Радиусы R, орталық бұрышы 2 -ға тең ОАВ дөңгелек секторды қарастырайық (1.35 сурет). ОАВ дөңгелек сектордың ауданын ойша О центрінен жүргізілген радиустармен n секторға бөлейік. Секторлардың санын шексіз көбейткенде оларды ауырлық центрі радиусы доғаның бойында жататын жазық үшбұрыштар деп қарастыруға болады. Демек, шеңбер доғасының ауырлық центрінің өрнегін пайдаланып дөңгелек сектор ауданының ауырлық центрін анықтайтын өрнек аламыз. 4. Конус көлемінің ауырлық центрі. Ыңғайлы болу үшін биіктігі симметрия өсі болатын дөңгелек конусты қарастырайық. Конустың шыңын координатаның бас нүктесі етіп, Oz өсін конустың симметрия өсімен бағыттаймыз.Конусты Oz өсіне перпендикуляр элементар жіңішке дискілерге бөліп, қалыңдығы dz және ауданы Sz бір дискіні қарастырайық. Бұл диск басқа дискілер сияқты конустың табанына ұқсас. Конусты біртекті деп алып, оның zC координатасын өрнегі бойынша санаймыз: Бұл өрнек кез келген конустың немесе пирамиданың көлемі үшін де орын алады. Демек, біртекті конус немесе пирамида көлемінің ауырлық центрі оның табанынан табан ауданының ауырлық центрін конус немесе пирамида шыңымен қосатын түзудің бөлігінде жатады.
|
|||
|