Хелпикс

Главная

Контакты

Случайная статья





CONFLITS D'INTÉRÊTS



CONFLITS D'INTÉ RÊ TS

 

Les auteurs ont dé claré n'avoir pas de conflits d'inté rê ts.

RÉ FÉ RENCES

 

1. Cox-Foster D, VanEngelsdorp D. Saving the honey bee. Scientific American. 2009; 300(4): 40-7.

2. Council NR. Status of pollinators in North America: National Academies Press; 2007.

3. Grixti JC, Wong LT, Cameron SA, Favret C. Decline of bumble bees (Bombus) in the North American Midwest. Biological conservation. 2009; 142(1): 75-84.

4. Goulson D, Lye GC, Darvill B. Decline and conservation of bumble bees. Annu Rev Entomol. 2008; 53: 191-208.

5. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, et al. Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences. 2011; 108(2): 662-7.

6. Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, et al. Colony collapse disorder: a descriptive study. PLoS ONE. 2009; 4(8): e6481.

7. Watanabe ME. Colony collapse disorder: many suspects, no smoking gun. BioScience. 2008; 58(5): 384-8.

8. Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE. 2017; 12(10): e0185809.

9. Brooks DR, Bater JE, Clark SJ, Monteith DT, Andrews C, Corbett SJ, et al. Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. Journal of Applied Ecology. 2012; 49(5): 1009-19.

10. Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biological conservation. 2006; 132(3): 279-91.

11. Thomas J. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 2005; 360(1454): 339-57.

12. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B. Defaunation in the Anthropocene. Science. 2014; 345(6195): 401-6.

13. Deonarine A, Bartov G, Johnson TM, Ruhl L, Vengosh A, Hsu-Kim H. Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 2. Effect of coal ash on methylmercury in historically contaminated river sediments. Environmental Science & Technology. 2013; 47(4): 2100-8.

14. Harkness JS, Sulkin B, Vengosh A. Evidence for coal ash ponds leaking in the southeastern United States. Environmental Science & Technology. 2016; 50(12): 6583-92.

15. Environmental Protection Agency EPA: https: //www. epa. gov/coalash/coal-ash-reuse Accessed June 4, 2018.

16. Basu M, Pande M, Bhadoria PBS, Mahapatra SC. Potential fly-ash utilization in agriculture: A global review. Progress in Natural Science. 2009; 19(10): 1173-86.

 

17. Herndon JM, Whiteside M. Further evidence of coal fly ash utilization in

tropospheric geoengineering: Implications on human and environmental health. J Geog Environ Earth Sci Intn. 2017; 9(1): 1-8.

18. Herndon JM, Whiteside M. Contamination of the biosphere with mercury: Another potential consequence of on-going climate manipulation using aerosolized coal fly ash J Geog Environ Earth Sci Intn. 2017; 13(1): 1-11.

19. Herndon JM. Evidence of variable Earth-heat production, global non-anthropogenic climate change, and geoengineered global warming and polar melting. J Geog Environ Earth Sci Intn. 2017; 10(1): 16.

20. Shearer C, West M, Caldeira K, Davis SJ. Quantifying expert consensus against the existence of a secret large-scale atmospheric spraying program. Environ Res Lett. 2016; 11(8): p. 084011.

21. Moreno N, Querol X, André s JM, Stanton K, Towler M, Nugteren H, et al. Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel. 2005; 84: 1351-63.

22. Herndon JM. Aluminum poisoning of humanity and Earth's biota by clandestine geoengineering activity: implications for India. Curr Sci. 2015; 108(12): 2173-7.

23. Chen Y, Shah N, Huggins FE, Huffman GP. Transmission electron microscopy investigation of ultrafine coal fly ash particles. Environ Science and Technogy. 2005; 39(4): 1144-51.

24. Thomas W. Chemtrails Confirmed. Carson City, Nevada (USA): Bridger House Publishers; 2004.

 

25. Fisher GL. Biomedically relevant chemical and physical properties of coal combustion products. Environ Health Persp. 1983; 47: 189-99.

26. Alstad D, Edmunds Jr G, Weinstein L. Effects of air pollutants on insect populations. Annual Review of Entomology. 1982; 27(1): 369-84.

27. Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The lancet. 2015; 386(10010): 2287-323.

28. State of Global Air https: //www. stateofglobalair. org Accessed June 4, 2018.

29. Jensen P, Trumble JT. Ecological consequences of bioavailability of metals and metalloids in insects. Recent Res Dev Entomol. 2003; 42: 1-17.

30. Butler CD, Trumble JT. Effects of pollutants on bottom-up and top-down processes in insect–plant interactions. Environmental Pollution. 2008; 156(1): 1-10.

31. Trumble JT, Vickerman DB. Pollution and Terrestrial Arthropods. Encyclopedia of Entomology: Springer; 2004. p. 1787-9.

32. Brake S, Jensen R, Mattox J. Effects of coal fly ash amended soils on trace element uptake in plants. Environmental Geology. 2004; 45(5): 680-9.

33. Calatayud P, Njuguna E, Juma G. Silica in Insect-Plant Interactions. Entomol Ornithol Herpetol. 2016; 5: e125.

34. Mucha-Pelzer T, Debnath N, Goswami A, Mewis I. Comparison of different silicas of natural origin as possible insecticides. Communications in agricultural and applied biological sciences. 2008; 73(3): 621-8.

35. Vuori KM. Acid‐ induced acute toxicity of aluminium to three species of filter feeding caddis larvae (Trichoptera, Arctopsychidae and Hydropsychidae). Freshwater Biology. 1996; 35(1): 179-88.

36. Kijak E, Rosato E, Knapczyk K, Pyza E. Drosophila melanogaster as a model system of aluminum toxicity and aging. Insect science. 2014; 21(2): 189-202.

37. Chicas-Mosier AM, Cooper BA, Melendez AM, Pé rez M, Oskay D, Abramson CI. The effects of ingested aqueous aluminum on floral fidelity and foraging strategy in honey bees (Apis mellifera). Ecotoxicology and Environmental Safety. 2017; 143: 80-6.

38. Nichol H, Law JH, Winzerling JJ. Iron metabolism in insects. Annual Review of Entomology. 2002; 47(1): 535-59.

39. Ghio AJ, Cohen MD. Disruption of iron homeostasis as a mechanism of biologic effect by ambient air pollution particles. Inhalation Toxicology. 2005; 17(13): 709-16.

40. Sohal R, Allen R, Farmer K, Newton R. Iron induces oxidative stress and may alter the rate of aging in the housefly, Musca domestica. Mechanisms of ageing and development. 1985; 32(1): 33-8.

41. Ferrero A, Torreblanca A, Garcerá MD. Assessment of the effects of orally administered ferrous sulfate on Oncopeltus fasciatus (Heteroptera: Lygaeidae). Environ Sci Pollut Res. 2017; 24(9): 8551-61.

42. Exley C, Rotheray E, Goulson D. Bumblebee pupae contain high levels of aluminum. PLoS ONE. 2015; 10(6): e0127665.

43. van der Steen JJ, de Kraker J, Grotenhuis T. Spatial and temporal variation of metal concentrations in adult honey bees (Apis mellifera L. ). Environmental Monitoring and Assessment. 2012; 184(7): 4119-26.

44. Zhelyazkova I. Honey bees–bioindicators for environmental quality. Bulg J Agric Sci. 2012; 18(3): 435-42.

45. Altunatmaz SS, Tarhan D, Aksu F, Barutcu UB, Or ME. Mineral element and heavy metal (cadmium, lead and arsenic) levels of bee pollen in Turkey. Food Science and Technology (Campinas). 2017(AHEAD): 0-.

46. Kostić AŽ, Peš ić MB, Mosić MD, Dojč inović BP, Natić MM, Trifković JĐ. Mineral content of bee pollen from Serbia/Sadrž aj minerala u uzorcima pč elinjega peluda iz Srbije. Archives of Industrial Hygiene and Toxicology. 2015; 66(4): 251-8.

47. Sattler JAG, De-Melo AAM, Nascimento KS, Mancini-Filho J, Sattler A, al. e. Essential minerals and inorganic contaminants (barium, cadmium, lithium, lead and vanadium) in dried bee pollen produced in Rio Grande do Sul State, Brazil. Food Science and Technology (Campinas). 2016; 36(3): 505-9.

48. Azam I, Afsheen S, Zia A, Javed M, Saeed R, Sarwar MK, et al. Evaluating insects as bioindicators of heavy metal contamination and accumulation near industrial area of Gujrat, Pakistan. BioMed Research International. 2015; 2015.

49. Karadjova I, Markova E. Metal accumulation in insects (Orthoptera, Acrididae) near a copper smelter and copper-flotation factory (Pirdop, Bulgaria). Biotechnology & Biotechnological Equipment. 2009; 23(sup1): 204-7.

50. Devkota B, Schmidt G. Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agriculture, ecosystems & environment. 2000; 78(1): 85-91.

51. Negri I, Mavris C, Di Prisco G, Caprio E, Pellecchia M. Honey bees (Apis mellifera, L. ) as active samplers of airborne particulate matter. PLoS ONE. 2015; 10(7): e0132491.

52. Kitherian S. Nano and Bio-nanoparticles for Insect Control. Res J Nanosci Nanotechnol. 2017.

53. Buteler M, Sofie S, Weaver D, Driscoll D, Muretta J, Stadler T. Development of nanoalumina dust as insecticide against Sitophilus oryzae and Rhyzopertha dominica. International journal of pest management. 2015; 61(1): 80-9.

54. Murugan K, Dinesh D, Nataraj D, Subramaniam J, Amuthavalli P, Madhavan J, et al. Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environ Sci Pollut Res. 2018; 25(11): 10504-14.

55. Maher BA, Ahmed IAM, Karloukovski V, MacLauren DA, Foulds PG, et al. Magnetite pollution nanoparticles in the human brain. Proc Nat Acad Sci. 2016; 113(39): 10797-801.

56. Acosta-Avalos DL, Wajnberg E, Oliveira PS, Leal I, Farina M, Esquivel DM. Isolation of magnetic nanoparticles from Pachycondyla marginata ants. Journal of Experimental Biology. 1999; 202(19): 2687-92.

57. Liang C-H, Chuang C-L, Jiang J-A, Yang E-C. Magnetic sensing through the abdomen of the honey bee. Scientific Reports. 2016; 6: 23657.

58. Maher BA. Magnetite biomineralization in termites. Proceedings of the Royal Society of London B: Biological Sciences. 1998; 265(1397): 733-7.

59. Petrovský E, Zboř il R, Grygar TM, Kotlí k B, Nová k J, Kapič ka A, et al. Magnetic particles in atmospheric particulate matter collected at sites with different level of air pollution. Studia Geophysica et Geodaetica. 2013; 57(4): 755-70.

60. Kirschvink JL. Microwave absorption by magnetite: A possible mechanism for coupling non-thermal levels of radiation to biological systems. Bioelectromag. 1996; 17: 187-94.

61. Thielens A, Bell D, Mortimore DB, Greco MK, Martens L, Joseph W. Exposure of Insects to Radio-Frequency Electromagnetic Fields from 2 to 120 GHz. Scientific Reports. 2018; 8(1): 3924.

62. Kumar NR, Sangwan S, Badotra P. Exposure to cell phone radiations produces biochemical changes in worker honey bees. Toxicology international. 2011; 18(1): 70.

63. Zarić N, Ilijević K, Stanisavljević L, Grž etić I. Metal concentrations around thermal power plants, rural and urban areas using honey bees (Apis mellifera L. ) as bioindicators. International journal of environmental science and technology. 2016; 13(2): 413-22.

64. De Jong D, Morse RA, Gutenmann WH, Lisk DJ. Selenium in pollen gathered by bees foraging on fly ash-grown plants. Bulletin of environmental contamination and toxicology. 1977; 18(4): 442-4.

65. Roman A. Levels of Copper, Selenium, Lead, and Cadmium in Forager Bees. Polish journal of environmental studies. 2010; 19(3).

66. Hladun KR, Smith BH, Mustard JA, Morton RR, Trumble JT. Selenium toxicity to honey bee (Apis mellifera L. ) pollinators: effects on behaviors and survival. PLoS ONE. 2012; 7(4): e34137.

67. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. EXS. 2012; 101: 133-64.

68. Zaman K, MacGill R, Johnson J, Ahmad S, Pardini R. An insect model for assessing mercury toxicity: effect of mercury on antioxidant enzyme activities of the housefly (Musca domestica) and the cabbage looper moth (Trichoplusia ni). Archives of Environmental Contamination and Toxicology. 1994; 26(1): 114-8.

69. Braeckman B, Raes H, Van Hoye D. Heavy-metal toxicity in an insect cell line. Effects of cadmium chloride, mercuric chloride and methylmercuric chloride on cell viability and proliferation in Aedes albopictus cells. Cell biology and toxicology. 1997; 13(6): 389-97.

70. Trumble JT, Kund G, White K. Influence of form and quantity of selenium on the development and survival of an insect herbivore. Environmental Pollution. 1998; 101(2): 175-82.

71. Shonouda M, El-Samad L, Mokhamer H, Toto N. Use of oxidative streess and genotoxic biomarkers of aquatic beetles Anacaena globulus (Coleoptera: Hydrophilidae) as biomonitors of water pollution. J Entomol. 2016; 13: 122-31.

72. Cabrol NA, Feister U, Hä der D-P, Piazena H, Grin EA, Klein A. Record solar UV irradiance in the tropical Andes. Frontiers in Environmental Science. 2014; 2(19).

73. Có rdoba C, Munoz J, Cachorro V, de Carcer IA, Cussó F, Jaque F. The detection of solar ultraviolet-C radiation using KCl: Eu2+ thermoluminescence dosemeters. Journal of Physics D: Applied Physics. 1997; 30(21): 3024.

74. D'Antoni H, Rothschild L, Schultz C, Burgess S, Skiles J. Extreme environments in the forests of Ushuaia, Argentina. Geophysical Research Letters. 2007; 34(22).

75. Herndon JM, Hoisington RD, Whiteside M. Deadly ultraviolet UV-C and UV-B penetration to Earth’s surface: Human and environmental health implications. J Geog Environ Earth Sci Intn. 2018; 14(2): 1-11.

76. Ravanat J-L, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. Journal of Photochemistry and Photobiology B: Biology. 2001; 63(1): 88-102.

77. Ballare CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochemical & Photobiological Sciences. 2011; 10(2): 226-41.

78. Sang W, Yu L, He L, Ma W-H, Zhu Z-H, Zhu F, et al. UVB radiation delays Tribolium castaneum metamorphosis by influencing ecdysteroid metabolism. PLoS ONE. 2016; 11(3): e0151831.

79. Hori M, Shibuya K, Sato M, Saito Y. Lethal effects of short-wavelength visible light on insects. Scientific Reports. 2014; 4: 7383.

 

80. Kriebel D, Tickner J, Epstein P, Lemons J, Levins R, Loechler EL, et al. The precautionary principle in environmental science Environ Healt Perspec. 2001; 109(9): 871-6.

 

Article en anglais: http: //www. nuclearplanet. com/whin. pdf

 

 

© 2018 Whiteside and Herndon; Ceci est un article Open Access distribué selon les termes de la Licence Creative Commons Attribution (http: //creativecommons. org/licenses/by/4. 0

), qui permet une utilisation, une distribution et une reproduction illimité es sur tout support, à condition que l’œ uvre originale soit correctement cité e.

Historique de l'examen par les pairs:

L'historique de l'é valuation par les pairs pour cet article peut ê tre consulté ici: http: //www. sciencedomain. org/review-history/25994

 

Whiteside and Herndon; AJOB, 6(4): 1-13, 2018; Article no. AJOB. 43268

 

email: mherndon@san. rr. com

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.