|
|||
2. Экспоненциальная средняя.. 3. Прогнозирование на основе сезонных колебаний.2. Экспоненциальная средняя. При рассмотрении скользящей средней было отмечено, что чем “старше” наблюдение, тем меньше оно должно оказывать влияние на величину скользящей средней. То есть влияние прошлых наблюдений должно затухать по мере удаления от момента, для которого определяется средняя.
3. Прогнозирование на основе сезонных колебаний. Одним из статистических методов прогнозирования является расчет прогнозов на основе сезонных колебаний уровней динамического ряда. При этом под сезонными колебаниями понимаются такие изменения уровня динамического ряда, которые вызываются влияниями времени года. Проявляются они с различной интенсивностью во всех сферах жизни общества: производстве, обращении и потреблении. Их роль очень велика в агропромышленном комплексе, в торговле многими товарами, в строительстве, на транспорте, в заболеваемости и др. Сезонные колебания строго цикличны – повторяются через каждый год, хотя сама длительность времен года имеет колебания. Для изучения сезонных колебаний необходимо иметь уровни за каждый квартал, а лучше за каждый месяц, иногда даже за декады, хотя декадные уровни могут уже сильно исказиться мелкомасштабной случайной колеблемостью.
4. Прогнозирование методом линейной регрессии - является одним из наиболее широко применяемых методов статистического прогнозирования. Метод базируется на анализе взаимосвязи двух переменных (метод парной корреляции) - влияние вариации факторного показателя Х (например, расходов на рекламу) на результативный показатель У (например, на объем продаж)
|
|||
|