Хелпикс

Главная

Контакты

Случайная статья





Инструментальные (аналитические) и статистические методы прогнозирования



 

 

Инструментальные (аналитические) и статистические методы прогнозирования

 

Статистические методы прогнозирования

1. Экстраполяция по скользящей средней - может применяться для целей краткосрочного прогнозирования.

Необходимость применения скользящей средней вызывается следующими обстоятельствами. Бывают случаи, когда имеющиеся данные динамического ряда не позволяют обнаруживать какую-либо тенденцию развития (тренд) того или иного процесса (из-за случайных и периодических колебаний исходных данных). В таких случаях для лучшего выявления тенденции прибегают к методу скользящей средней.

Метод скользящей средней состоит в замене фактических уровней динамического ряда расчетными, имеющими значительно меньшую колеблемость, чем исходные данные. При этом средняя рассчитывается по группам данных за определенный интервал времени, причем каждая последующая группа образуется со сдвигом на один год (месяц). В результате подобной операции первоначальные колебания динамического ряда сглаживаются, поэтому и операция называется сглаживанием рядов динамики (основная тенденция развития выражается при этом уже в виде некоторой плавной линии).

Метод скользящей средней называется так потому, что при вычислении средние как бы скользят от одного периода к другому; с каждым новым шагом средняя как бы обновляется, впитывая в себя новую информацию о фактически реализуемом процессе.

Таким образом, при прогнозировании исходят из простого предположения, что следующий во времени показатель по своей величине будет равен средней, рассчитанной за последний интервал времени.

Пример: если обьем продаж товара Х составил (штук):

в январе - 60,
в феврале - 85,
в марте - 80,
в апреле - 92,
в мае - 88.
в июне - 96,

то прогноз продаж на июль (для 5-ти месячного периода) составит:

(85 + 80 + 92 + 88 + 96) / 5 = 88, 2.

Если реальный объем продаж на июль составил 94 штуки, то прогноз продаж на август уже будет равен:

(80 + 92 + 88 + 96 + 94) / 5 = 90

и так далее.

Число значений “n” для подсчета скользящей средней (в нашем примере равно 5) выбирается в зависимости от того, насколько важны старые значения исследуемого показателя в сравнении с новыми. Так, если мы будем использовать для подсчета 3-х месячный период, тогда:

92 + 88 + 96

yиюль *= -------------------- = 92.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.