|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fixed Income and Derivatives. Home Assignment 1. Problem 1.. Treasury Bond Prices on February 15, 2009. Price (% FV and ticks). Treasury Bond Prices on February 15, 2009. Problem 2.. Maturity (yrs). ZCBond 2. ZCBond 2. ZCBond 2. Portfolio's value
Natalia Remizova Fixed Income and Derivatives Home Assignment 1 Problem 1. a) To convert bond prices into decimal figures we simply divide ticks by 32 and add to the numbers before hyphens, i. e. (4)+(5)/32, e. g. for the first price: 101+12, 75/32=101, 3984 (see column (6)). b) Using bootstrap method we get: · for r1: 101, 3984=(100+7, 874/2)/(1+ r1/2) => r1= 0, 0501 · for r2: 108, 9844=14, 25/2/(1+ r1/2) +(100+14, 25/2)/(1+ r2/2)2 => r2= 0, 0493 · for r3: 102, 1563=6, 375/2/(1+ r1/2) +6, 375/2/(1+ r2/2)2 +(100+6, 375/2)/(1+ r3/2)3 => r2= 0, 0486 · for r4: 102, 5664=6, 25/2/(1+ r1/2) +6, 25/2/(1+ r2/2)2 +6, 25/2/(1+ r3/2)3 +(100+6, 25/2)/(1+ r4/2)4 => r4= 0, 0489 · for r5: 100, 8438=5, 25/2/(1+ r1/2) +5, 25/2/(1+ r2/2)2 +5, 25/2/(1+ r3/2)3 +5, 25/2/(1+ r4/2)4 +(100+5, 25/2)/(1+ r5/2)5 => r5= 0, 0489 Treasury Bond Prices on February 15, 2009
c) To find out whether there are any arbitrage opportunities we calculate no-arbitrage prices (column (6)). · P1=(100+6, 6875)/(1+ r1/2)= 104, 0813 · P2=5, 375/(1+ r1/2)+ (100+5, 375/2)/(1+ r2/2)2 = 104, 0813 · P3=2, 875/2/(1+ r1/2) +2, 875/2/(1+ r2/2)2 +(100+2, 875/2)/(1+ r3/2)3= 102, 0069 · P4=6, 25/2/(1+ r1/2) +6, 25/2/(1+ r2/2)2 +6, 25/2/(1+ r3/2)3 +(100+6, 25/2)/(1+ r4/2)4= 111, 7471
Problem 2. a) Macaulay duration of zero-coupon bonds is equal to their maturity. Modified duration = Dmod=DMac/(1+r) for annual compounding. Pricei=100/(1+ri) (see columns (2) and (3)).
To immunize the ZCBond 2 we need to use ZCBond 1 as a hedging instrument. q=8, 8996*2, 9412/(96, 1538*0, 9804)=2, 7737 Thus we need to sell 2, 7737 units of ZCBond 1 to hedge against small parallel changes in the spot rates.
b) To construct a barbell portfolio we take ZCBond 1 (as the shortest maturity) and ZCBond 3 (as the longest maturity) with such weights that the duration of the portfolio would be equal to duration of ZCBond 2. Barbell portfolio would generate additional profits if long spot rates would change more significant than short rates. To get the same duration of the portfolio as ZCBond 2, ZCBond 1 and ZCBond 3 should have the following weights: q(short)=q(ZCBond 1)=(10-3)/(10-1)=7/9= 0, 7778 q(long)=q(ZCBond 3)=1-7/9=2/9= 0, 2222 c) First compute new returns for both scenarios
Then compute bonds’ prices:
Portfolio’s value is the weighted average of ZCBond 1 and ZCBond 3, the weighs are 7/9 and 2/9 respectively. Thus Pport(Twist scenario)=90, 1822 and Pport(Steeping scenario)=89, 5671.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|