|
|||
ЗП – зона проводимостиЗЗ – запрещённая зона ЗВ – валентная зона При увеличении t0, сопротивление в проводнике увеличивается, а в полупроводниках - уменьшается.
При 00К движения нет; все материалы — диэлектрики, но при 40К наблюдается явление сверхпроводимости. Чем больше t°, тем больше энергия, тем больше проводимость. Проводимость увеличивается в 2 раза при изменении t° на 10°. Для снижения температурной зависимости существуют примеси. Пример полупроводников Ge, In, Si, арсенид Ga. . Пример донорной примеси: Sb, As, B. Примесь добавляется в соотношении 1: 1000000. Электрон в атоме двигается за счёт диффузии и за счёт электромагнитного поля. Существует дрейфовый и диффузионный ток. Полупроводник, получивший донорную примесь, называется полупроводником n-типа (основной носитель заряда - электрон) С точки зрения квантовой теории скорость движения дырки и электрона одинаковы. На практике длина свободного пролета электрона в два раза больше, чем у дырки, поэтому полупроводники n-типа являются более высокочастотными и применяются чаще. Полупроводник, получивший акцепторную примесь, называется полупроводником p-типа (основной носитель заряда - дырка). . Принцип действия диода основан на свойствах p-n-переходов, образуемых в результате полупроводников с различным типом проводимости или контакта полупроводника с металлом (диод Шотки). Р-n переход. В основу действия р-n перехода полупроводниковых диодов положен принцип действия р-n перехода, который получается в результате внедрения в полупроводник различных типов примесей (донорную и акцепторную). В результате диффузии на границе раздела образуется р-n переход с объемным зарядом и напряженностью Е. Свойства р-n перехода. При соединении полупроводников с различными типами проводимости идет диффузия основных носителей зарядов в прилегающей к границе области с противоположным типом проводимости. Процесс будет идти, пока не возникнет объемный заряд р-n перехода, уравновешивающий объемные заряды полупроводников. На границе возникает потенциальный барьер, величина которого будет определяться внешним электрическим полем. Рассматривая зависимость тока от внешнего приложенного напряжения U, получим:
I-ток, протекающий через диод -тепловой ток -тепловой потенциал Важным параметром р-n перехода является дифференциальное сопротивление Временные характеристики р-n перехода. При прямом включении р-n перехода идет процесс накопления неосновных носителей заряда и заряда емкости р-n перехода. После смены полярности питающего напряжения направление тока через переход изменится, а его значение будет характеризоваться переходом неосновных носителей заряда под действием внешнего электрического поля. Это время называют временем рассасывания неосновных носителей заряда в базе, т. к. база характеризуется более высоким удельным сопротивлением, чем эмиттер. В качестве базы могут выступать как анод, так и катод. По окончании идет перезаряд емкости р-n перехода. Перезаряд описывается эксоненциальным законом, и время заряда характеризуется постоянной времени цепи . R-суммарное сопротивление внешней цепи и дифференциального сопротивления полупроводника С-емкость р-n перехода Процесс считается завершенным, если его время . Тогда величина тока или напряжения достигает 0. 96 от установившегося значения. Для ускорения процесса перехода от закрытого состояния в открытое, и наоборот, нужно уменьшить время рассасывания неосновных носителей заряда. Это осуществляется путем подключения диодов Шоттки к р-n переходу. Математическая модель полупроводникового диода. Математическая модель полупроводниковых диодов основана на физических явлениях, происходящих в р-n переходе и описываемых известными физическими законами. На это требуется сложный математический аппарат, учитывающий многие факторы, влияющие на параметры диода. Максимально простой способ получения математической модели- аппроксимация полученных выходных характеристик и на их основе решение уравнений с помощью известных законов электротехники, Для идеального р-n перехода, т. к. приращение тока равно бесконечности при нулевом приращении напряжения, дифференциальное сопротивление р-n перехода равно нулю. В этом случае схема замещения представляет собой короткозамкнутый р-n переход.
|
|||
|