Хелпикс

Главная

Контакты

Случайная статья





Бантова М. А., Бельтюкова Г. В. Методика преподавания математики в начальных классах. Москва. Просвещение. 1984г.



Вопрос №1.

Подготовительная работа перед введение типовых задач на движение.

Бантова М. А., Бельтюкова Г. В. Методика преподавания математики в начальных классах. Москва. " Просвещение". 1984г.

 

 

Подготовительная работа к решению задач связанных с движением, предусматривает: обобщение представлений детей о движении, знакомство с новой величиной – скоростью, раскрытие связей между величинами: скорость, время, расстояние.

С целью обобщения представлений детей о движении полезно провести специальную экскурсию по наблюдению за движением транспорта, после чего провести наблюдение в условиях класса, где движение будут демонстрировать сами дети. На экскурсии и во время работы в классе пронаблюдать за движением одного тела и двух тел относительно друг друга. Так, одно тело (машина, человек, и т. п. ) может двигаться быстрее и медленнее, может остановиться, может двигаться по прямой или кривой. Два тела могут двигаться в одном направлении, а могут двигаться в противоположных направлениях: либо приближаться друг к другу (двигаясь на встречу одно к другому), либо удаляясь одно от другого. Наблюдая указанные ситуации в условиях класса, надо показать детям, как выполняются чертежи: расстояние принято обозначать отрезком; место отправления, встречи, прибытия обозначают либо черточкой, либо флажком; направление движения указывают стрелкой.

Важным результатом ознакомления учащихся с простыми задачами на движение в одном направлении является усвоение простейших формул, связывающих такие величины, как скорость, время и расстояние (v, t, s ).

Рассмотрим основные пути усвоения зависимости между этими величинами, характеризующими равномерное движение.

На первом из уроков необходимо, опираясь на жизненный опыт и наблюдения учащихся обратить внимание детей на то, что некоторые предметы могут двигаться быстрее и медленнее. Например, велосипедист может обогнать пешехода, автомобиль – велосипедиста, самолет – автомобиль и т. д. Предметы могут двигаться равномерно. Так, например, пешеход может проходить за каждый час по 3 км; автомобиль может проезжать за каждый час по 100 км; бегун может пробегать за каждую секунду по 8 м и т. д. В этом случае говорят, что скорость (соответственно) пешехода – 3 км в час (записывают 3км/ч), автомобиля 100 км/ч, бегуна – 8 м/с.

При ознакомлении со скоростью необходимо так организовать работу учащихся, чтобы они сами нашли скорость своего движения пешком. Дети проходят расстояние за одну минуту. Учитель же сообщает, что расстояние, которое ученик прошел за 1 минуту называется скоростью. Учащиеся называют свои скорости. Затем учитель называет скорости некоторых видов транспорта и подводит детей к выводу: скорость движения – это расстояние, которое проходит движущийся предмет за единицу времени. После этого рассматриваются простые задачи, на основании которых делается вывод, что для нахождения скорости движения предмета, нужно расстояние, которое прошел предмет, разделить на время, затраченное для этого. Если скорость обозначить буквой v, путь – буквой s, а время - буквой t, то можно записать этот вывод в виде формулы: v= s: t.

На последующих уроках с помощью решения соответствующих простых задач устанавливается, что расстояние равно скорости, умноженной на время: s = v *. t.

На основе решения следующего вида задачустанавливается, что время равно расстоянию, деленному на скорость: t = s: v. Можно обратить внимание учащихся на связь между этими тремя формулами (например, последняя формула может быть выведена из первой)

В результате решения соответствующих простых задач ученики должны усвоить такие связи:

· если известны расстояние (s) и время (t) движения, то можно найти скорость (v) действием деления: v=s: t

· если известны скорость (v) и время (t) движения, то можно найти расстояние (s)действием умножения: s=v*t

· если известны расстояние (s) и скорость (v), то можно найти время (t) движения действием деления: t=s: v.

Таким образом, специфика этих задач обуславливается введением такой величины, как скорость движения, а также использованием при их решении схем, которые отражают не отношения между величинами, а процесс движения и во многом облегчают поиск решения.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.