Хелпикс

Главная

Контакты

Случайная статья





Хромирование



Хромирование — процесс насыщения поверх­ностного слоя стальных деталей хромом, осуществляемый при высо­ких температурах (950... 1300 °С) путем диффузии хрома в железо. Существуют три метода термохромирования: твердое, жидкое и га­зовое.

В результате диффузионного хромирования повышается износостой­кость и коррозионная стойкость, а также сопротивление усталости. Диффузионному хромированию подвергают чугуны, стали различ­ных классов и назначений, сплавы на основе никеля, молибдена, вольфрама, ниобия, кобальта и металлокерамические материалы. Термохромированию подвергают детали, изготовленные из угле­родистой стали и работающие в условиях электрохимической или газовой коррозии, например анкерные болты, клапаны компрес­соров, лопатки газовых турбин.  Наибольшее распространение получили порошковый и вакуумный метод хромирования.

Углерод препятствует диффузии хрома в сталь. При хромировании легированной стали со средним и высоким содер­жанием углерода (0, 3—1 % С) на поверхности образуется сплошной слой твердой и износостойкой карбидной фазы (Сг23С6 и Сг7С3). Далее следует переходная зона. Иногда для увеличения хромирован­ного слоя проводят предварительное обезуглероживание поверх­ности с помощью водорода. После хромирования низкоуглеродистой легированной стали на ее поверхности образуется слой интерметал­лических соединений (например σ - фаза), придающий диффузионному слою повышенную хрупкость.

Установлено, что легирующие эле­менты, стабилизирующие α - фазу, способствуют хромированию, а стабилизирующие γ - фазу тормозят диффузию хрома. Следовательно, ванадий, ниобий, титан, молибден, вольфрам и хром способствуют хромированию, а марганец и никель действуют наоборот. Введение карбидообразующих элементов в малоуглероди­стые стали способствует получению больших слоев твердого раствора хрома. В этом случае углерод, связанный в карбидную фазу, не пре­пятствует диффузии хрома. Стали обыкновенного качества, содержащие серы и фосфора более 0, 05 % оказались непригодными для хромирования, так как после хромирования зна­чительно снижался комплекс их механических свойств.

В то же время для замены дорогих хромоникелевых нержавеющих сталей разработана технология глубокого хромирования листовой качественной малоуглеродистой стали (08кп). Хромирование производят в вакуумных камерах (10—10-1 Па) при 1420 °С. За 18— 24 ч получают хромированный слой толщиной 2, 0—2, 5 мм с концен­трацией на поверхности до 70 % Сr. Вакуумное глубокое хромиро­вание применяют также для металлургических заготовок с после­дующей прокаткой на листы и трубы. Хромированный прокат хо­рошо штампуется, сваривается контактной и электродуговой свар­кой, отличается высокой коррозионной стойкостью в азотной кислоте, щелочах, пищевых средах, обладает сравнительно высокой жаростой­костью (до 800 °С) в продуктах сгорания природного газа.

При хромировании серого и ковкого чугуна при температуре 950—1000 °С в течение 4—6 ч в порошковой смеси (50 % FeCr, 45 % А1203 и 5 % NH4C1 или NH4I) на поверхности возникает сплош­ной слой карбидной фазы. На сером перлитном чугуне слой состоит из карбидов хрома (Cr, Fe)23C6 и (Cr, Fe)7C3 с микротвердостью 18000 МПа. На поверхности ферритного ковкого чугуна возникает карбонитридный слой Cr2 (N, С), под которым находится слой кар­бидной фазы Сr23С6 с микротвердостью более 18000 МПа.

Целесообразно совмещать хромирование с термообработкой сплава и тем самым сокращать общее время обработки деталей.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.