Свойства. 8 страница
№ 82 Продолговатый мозг, его нейронная организация, участие в процессах саморегуляции функции организма.
Интегративная деятельность продолговатого мозга обусловлена широким спектром афферентных потоков, поступающих от многочисленных экстеро- и интерорецепторов. Она проявляется в многочисленных реакциях, эффекторами в которых являются как скелетные и гладкие мышцы, так и железы. В продолговатом мозге находятся ядра IX и X пар черепных нервов (языкоглоточный и блуждающий нервы) и XI и XII пар черепных нервов (добавочный и подъязычный нервы).
С участием ядер черепных нервов осуществляются такие врожденные сложноорганизованные пищевые реакции, как сосание, глотание, жевание. На уровне продолговатого мозга формируются защитные реакции — чиханье, кашель, рвота, глотание, мигание, слезоотделение.
Обширны связи продолговатого мозга с хеморецепторами и барорецепторами сосудов, интерорецепторами внутренних органов и вестибулорецепторами. Влияние этих органов определяет функционирование на уровне продолговатого мозга дыхательного и сердечно-сосудистого центpoв.
В продолговатом мозге находятся ретикулярные структуры, которые дают начало ретикулоспинальному тракту, контролирующему сегментарные двигательные реакции спинного мозга. Нисходящие влияния ретикулярной формации продолговатого мозга возбуждают α - и γ - мотонейроны сгибателей и тормозят мотонейроны разгибателей, что обусловливает адекватное перераспределение тонуса мышц и амплитуды их сокращения.
|
№ 83 Ретикулярная формация: ее строение, локализация в центральной нервной системе. Центры ретикулярной формации и их участие в регуляции функций организма. Особенности восходящих и нисходящих влияний ретикулярной формации.
Морфофункциональная организация. Встволовой части мозга, куда входит и средний мозг, расположена структура, состоящая из нейронов с короткими отростками и обозначаемая как сетевидная, или ретикулярная, формация. В ней выделяют две части: каудальную, входящую в состав продолговатого мозга и моста, и ростральную, или мезэнцефальную, ретикулярную формацию. Первая часть дает начало ретикулоспинальному пути, влияющему на спинальные реакции. Мезэнпефальная ретикулярная формация дает начало восходящей активирующей системе, включающей неспецифические ядра таламуса.
Восходящие активирующие влияния. Ретикулярная формация среднего мозга осуществляет восходящие активирующие генерализованные влияния на кору большого мозга. При электрическом раздражении ретикулярной формации наблюдается переход низкочастотной высокоамплитудной электрической активности коры в низкоамплитудную высокочастотную активность. Такие же изменения электрической активности головного мозга наблюдаются при переходе организма от состояния сна к бодрствованию или при воздействии на организм самых различных раздражителей. Активное состояние ретикулярной формации всегда поддерживается непрерывным потоком афферентных импульсов, поступающих в ретикулярную формацию по коллатеральным волокнам от проекционных сенсорных проводящих путей.
Благодаря этому при воздействии раздражителей в кору большого мозга всегда поступает два потока возбуждений. Один из них направляется в кору большого мозга по проекционным сенсорным путям и достигает специфической для данного раздражителя проекционной области. Другой поток возбуждений генерализованно направляется от ретикулярной формации к коре, усиливая ее активированное состояние. Генерализованное активирующее влияние ретикулярной формации является непременным условием поддержания бодрствующего состояния мозга. Лишение коры большого мозга источника возбуждающей энергии, каковым является ретикулярная формация, приводит к переходу головного мозга в недеятельное состояние, сопровождаемое медленноволновой высокоамплитудной электрической активностью, характерной для состояния сна.
Неспецифические и специфические влияния ретикулярной формации. В связи с тем что генерализованная активация коры большого мозга возникает при любом афферентном воздействии, восходящие активирующие влияния ретикулярной формации считаются неспецифическими, не связанными со спецификой действующего раздражителя. В то же время при формировании целостных приспособительных реакций организма восходящие активирующие влияния ретикулярной формации на кору головного мозга имеют специфический характер, т. е. включены в нейрофизиологические механизмы формирования конкретной мотивации — пищевой, половой, оборонительной.
Функциональная активность ретикулярной формации обеспечивается не только обширной мультисенсорной конвергенцией возбуждений к ее нейронам и конвергенцией возбуждений, поступающих от коры большого мозга, мозжечка и других подкорковых структур, но и многочисленными гуморальными факторами, по отношению к которым ретикулярная формация обладает высокой чувствительностью. Такие гуморальные регуляторы, как адреналин и С02, являются мощными возбудителями нейронов ретикулярной формации. Нейроны ретикулярной формации содержат: норадреналин, серотонин и дофамин.
Связь с другими структурами мозга. Ретикулярная формация имеет функциональные и анатомические связи с гипоталамусом, таламусом, продолговатым мозгом и другими отделами головного мозга, поэтому все наиболее общие функции организма, такие как терморегуляция, пищевые и болевые реакции, регуляция постоянства внутренней среды организма, сон и бодрствование, находятся в функциональной зависимости от свойств ретикулярной формации ствола мозга.
|
№ 84 Средний мозг, его строение и функции. Роль среднего мозга в регуляции топических рефлексов. Децеребрационная регидность и причины её возникновения.
Средний мозг: выделяют крышу и ножки. Полостью среднего мозга является водопровод мозга. Верхней (передней) границей среднего мозга на его вентральной поверхности служат зрительные тракты и сосцевидные тела, на задней — передний край моста. На дорсальной поверхности верхняя (передняя) граница среднего мозга соответствует задним краям (поверхностям) таламусов, задняя (нижняя) — уровню выхода корешков блокового нерва.
Крыша среднего мозга расположена над водопроводом мозга. Крыша среднего мозга состоит из четырех возвышений — холмиков. Последние отделены друг от друга бороздками. Верхние холмики крыши среднего мозга (четверохолмия) и латеральные коленчатые тела выполняют функцию подкорковых зрительных центров. Нижние холмики и медиальные коленчатые тела являются подкорковыми слуховыми центрами.
Ножки мозга выходят из моста. На медиальной поверхности каждой из ножек мозга располагается продольная глазодвигательная борозда, из которой выходят корешки глазодвигательного нерва. В покрышке среднего мозга залегают ядра среднего мозга и проходят восходящие проводящие пути. Основание ножки мозга целиком состоит из белого вещества, здесь проходят нисходящие проводящие пути.
В среднем мозге расположены подкорковые центры слуха и зрения, обеспечивающие иннервацию произвольных и непроизвольных мышц глазного яблока, а также среднемозговое ядро V пары. Через средний мозг проходят восходящие (чувствительные) и нисходящие (двигательные) проводящие пути.
Основные интегративные функции среднего мозга связаны с организацией двигательных актов и анализом афферентных потоков возбуждения.
Сторожевые реакции: осуществление организмом сторожевых, или старт-реакций. Легкая степень таких реакций у человека выражается вздрагиванием при неожиданном звуке или прикосновении; при более сильных неожиданных раздражителях человек вскрикивает, а иногда даже бежит. Старт-реакции обеспечивают мгновенную мобилизацию всего организма к активной деятельности при возникновении опасности. Нейрофизиологический механизм осуществления старт-реакций связан с функционированием бугорков четверохолмия. Нейроны верхних бугорков четверохолмия обеспечивают организацию ориентировочного поведения на зрительные стимулы. Нейроны нижних бугорков четверохолмия организуют ориентировочные двигательные реакции на звук.
Тонические реакции: связаны с перераспределением тонуса различных групп мышц. К этим структурам относятся красное ядро и латеральное преддверное ядро. Тонические реакции возникают при изменении положения тела или отдельных его частей (например, головы) в пространстве. Они предотвращают нарушение равновесия тела или восстанавливают уже нарушенное равновесие.
Реакции установки тела. Совокупность тонических реакций называется реакциями установки тела. Они делятся на две группы: статические и стато-кинетические. Статические реакции возникают при изменении положения тела, не связанном с его перемещением в пространстве. При этом изменяется тонус различных групп мышц для поддержания естественной позы в случае ее изменения. Статокинетические реакции проявляются в перераспределении тонуса скелетных мышц, которое обеспечивает сохранение равновесия тела человека при угловых и линейных ускорениях активного или пассивного перемещения его в пространстве. Подобные ситуации возникают при естественных передвижениях человека — ходьбе, беге. Восприятие направления и силы ускорения, осуществляется рецепторами отолитового аппарата и полукружных каналов лабиринта внутреннего уха. Сигналы, поступающие в средний мозг от вестибулорецепторов, вызывают вращательные реакции глаз, головы, конечностей и туловища.
Перерезка у животного ствола мозга между передними и задними буграми четверохолмия (операция перерезки ствола мозга называется децеребрацией) вызывает состояние скелетной мускулатуры, которое называется децеребрационной ригидностью . Это состояние характеризуется резким повышением тонуса разгибательной мускулатуры. Конечности сильно вытянуты, голова запрокинута, спина выгнута.
| |
| |
| | № 85 Промежуточный мозг. Гипоталамус, его функциональная организация. Роль гипоталамуса в регуляции гомеопатических, вегетативных и эндокринных функций организма, в формировании врождённых реакции, в механизмах эмоции и мотивации.
Границами промежуточного мозга на основании головного мозга являются сзади — передний край заднего продырявленного вещества и зрительные тракты, спереди — передняя поверхность зрительного перекреста. На дорсальной поверхности задней границей является борозда, отделяющая верхние холмики среднего мозга от заднего края таламусов. Переднебоковая граница разделяет с дорсальной стороны промежуточный мозг и конечный.
Промежуточный мозг включает следующие отделы: таламическую область (область зрительных бугров, зрительный мозг), гипоталамус, объединяющий вентральные отделы промежуточного мозга; III желудочек.
Структуры ЦНС, обеспечивающие регуляцию деятельности внутренних органов, поддерживающие постоянство внутренней среды организма и формирующие мотивационные состояния организма, объединяются понятием «висцеральный мозг». Он включает гипоталамус и лимбические образования ЦНС.
Гипоталамусявляется структурой ЦНС, осуществляющей сложную интеграцию и приспособление функций различных внутренних органов к целостной деятельности организма. Гипоталамус объединяет и связывает в единое целое механизмы гуморальной и нервной регуляции. Под контролем гипоталамуса находятся такие железы внутренней секреции, как гипофиз, щитовидная, половые железы, надпочечники и др. Регуляция тропных функций гипофиза осуществляется путем выделения гипоталамическими нейронами гормонов, поступающих в гипофиз в основном через портальную систему сосудов. Выделение тропных гормонов гипофиза приводит к изменению функций эндокринных желез, секрет которых попадает в кровь и в свою очередь может действовать на гипоталамус (обратная связь).
Передняя область гипоталамуса принимает непосредственное участие в регуляции выделения гонадотропинов и оказывает стимулирующее влияние на половое развитие организма. Гормоны нейрогипофиза являются продуктом секреции супраоптического ядра гипоталамуса (например, вазопрессин или антидиуретический гормон).
Регуляция вегетативных функций. Под контролем гипоталамических центров находятся такие интегративные функции организма, как поддержание постоянства температуры тела, углеводный, жировой и водный обмены организма, регуляция давления крови, регуляция половых функций и функций желудочно-кишечного тракта и др.
В зависимости от выполняемых функций в гипоталамусе выделяют две зоны. Первой зоной является динамогенная, занимающая среднюю и заднюю части гипоталамуса. При ее возбуждении наблюдаются расширение зрачка, повышение кровяного давления, активация дыхания, повышение двигательной возбудимости, т. е. проявления симпатических влияний вегетативной нервной системы. Второй зоной является трофогенная, находящаяся в преоптической области гипоталамуса. Возбуждение ее проявляется в сужении зрачка, снижении кровяного давления, урежении дыхания, рвоте, дефекации, мочеиспускании, слюноотделении, т. е. симптомах, характерных для влияний парасимпатической нервной системы.
В гипоталамусе располагаются центры голода, насыщения, жажды и др. Получая афферентные потоки возбуждений от интерорецепторов (осморе-цепторов, хеморецепторов, терморецепторов и т. д. ) и интегрируя их с гуморальными влияниями на нервные клетки гипоталамуса, эти центры формируют соответствующие мотивационные состояния организма.
Гипоталамус относится также к гипногенным структурам ЦНС, которые в функциональном взаимодействии обеспечивают смену сна и бодрствования.
|
№ 86 Мозжечок. Морфологическая и функциональная организация коры и ядер мозжечка. Участие мозжечка в регуляции познотонических рефлексов и висцеральных функций организма.
Мозжечок располагается дорсальнее от моста и от верхней дорсальной части продолговатого мозга. Он лежит в задней черепной ямке.
Интрегративные фкнкции мозжечка связаны с организацией двигательных актов и регуляцией вегетативных функций. При осуществлении двигательного акта перемещающиеся части тела испытывают влияние инерционных сил, что нарушает плавность и точность выполняемого движения. Коррекция движения осуществляется структурами мозжечка. В промежуточную часть мозжечка по коллатералям кортико-спинального тракта поступает информация о планируемом движении, а также афферентация от соматосенсорной системы. В результате формируется возбуждения к красному ядру и стволовым двигательным центрам, обеспечивающие взаимную координацию движений.
Особенно большое значение мозжечок имеет для построения быстрых баллистических целенаправленных движений Коррекция формируется в полушариях мозжечка и его зубчатом ядре на основе импульсации, поступающей от всех областей коры большого мозга, и фиксируется в мозжечке. Связь мозжечка с высшими вегетативными центрами и с некоторыми железами внутренней секреции обеспечивает его участие в регуляции вегетативных функций. Мозжечок оказывает стабилизирующее влияние на деятельность пищеварительного тракта, дыхание, деятельность сердца и тонус сосудов, терморегуляцию, обмен веществ.
Центральное место среди структур экстрапирамидной системы занимают базальные ядра. При их участии осуществляется синергизм всех элементов таких сложных двигательных актов, как ходьба, бег, лазанье; достигаются плавность движений и установка исходной позы для их осуществления.
Функции полосатого тела и бледного шара. Среди структурных образований экстрапирамидной системы полосатое тело считается высшим подкорковым регуляторно-координационным центром организации движений. Полосатое тело и бледный шар, влияя на нейроны спинного мозга через структуры среднего и продолговатого мозга, координируют тонус и фазовую двигательную активность мышц. Бледный шар оказывает тормозяшее воздействие на ядра среднего мозга.
В отличие от полосатого тела (стриатума) неостриатумвключает хвостатое ядро и скорлупу. Эти образования вызывают торможение моторного компонента условных и безусловных реакций организма.
Особенности морфофункциональной организации. Базальные ядра не имеют прямых выходов к мотонейронам спинного мозга, а опосредуют свои влияния на них через ретикулоспинальный тракт, являющийся как бы общим конечным путем. Эти влияния адресуются к γ -мотонейронам спинного мозга, которые регулируют поток проприоцептивных афферентных импульсов, поступающих в спинной мозг от мышечных веретен. Эти афферентные импульсы влияют на возбудимость а-мотонейронов, активность которых определяет рабочее состояние скелетных мышц.
Хвостатое ядро, скорлупа и бледный шар участвуют не только в регуляции моторной деятельности, но и в анализе афферентных потоков, в регуляции ряда вегетативных функций, в осуществлении сложных форм врожденного поведения, в механизмах кратковременной памяти, а также в регуляции цикла бодрствование—сон. На нейронах базальных ядер происходит взаимодействие афферентных потоков, поступающих практически от всех сенсорных структур, от многих областей коры головного мозга, от таламических, ретикулярных, лимбических и других структур мозга.
Таким образом, широкие афферентные и эфферентные связи базальных ядер между собой, их двусторонние связи с корой большого мозга, особенно с ее моторными зонами, а также связи со структурами промежуточного, среднего и продолговатого мозга обеспечивают широкое взаимодействие возбуждений на нейронах, что является основой высшей интеграции и контроля поведенческих актов.
|
№ 87 Кора больших полушарий. Методы исследования. Современные представления о локализации функций в коре головного мозга. Особенности деятельности левого и правого полушарии коры головного мозга Роль коры в произвольной регуляции двигательной активности.
Морфофункциональная организация. Вкоре большого мозга различают пять долей: лобную, теменную, затылочную, височную и островковую, каждая из которых имеет проекционные и ассоциативные области. К проекционным областям коры импульсы возбуждения поступают преимущественно от специфических сенсорных и двигательных ядер таламуса. Основным источником возбуждений, поступающим к ассоциативным областям коры мозга, являются другие проекционные и ассоциативные корковые зоны.
Проекционные и ассоциативные области коры мозга получают сигналы от неспецифических ядер таламуса. Эти неспецифические влияния определяют уровень активного состояния коры большого мозга.
Представления о функциональной организации различных областей коры большого мозга получены при микроэлектродной регистрации биоэлектрической активности отдельных нейронов.
Особенности проекционных зон. Общим является наличие большого количества специфических нейронов, которые дают реакции на раздражители строго определенной сенсорной модальности. Среди специфических нейронов выделены проекционные нейроны, имеющие однозначную связь с проекционным рецептивным периферическим полем, и непроекционные нейроны, возбуждающиеся с различных рецептивных полей одной модальности. Например, некоторые нейроны зрительной области коры большого мозга реагируют на звуковые стимулы. Неспецифические нейроны, как правило, больше находятся в ассоциативных областях коры головного мозга.
Одним из общих механизмов функционирования нейронов различных областей коры мозга является механизм конвергенции возбуждений к отдельным нервным клеткам.
Мультисенсорная конвергенция. В коре большого мозга особенно многочисленны эффекты мультисенсорной конвергенции, поскольку в кору головного мозга приходят все афферентные потоки возбуждений. Чаше всего эффект мультисенсорной конвергенции дают неспецифические нейроны, что проявляется в реакции отдельных нервных клеток на несколько предъявляемых раздражителей (звуковой, световой, соматосенсорный и др. ).
Сенсорно-биологическая конвергенция проявляется в схождении к отдельным нейронам коры большого мозга мотивационных возбуждений, связанных с различными биологическими состояниями организма (боль, голод и др. ).
Мультибиологическая конвергенция. Мотивационные состояния организма возникают на основе генерализованных восходящих активирующих влияний подкорковых образований на кору большого мозга. Эти восходящие влияния, формируемые подкорковыми структурами — гипоталамусом, ретикулярной формацией, лимбическими образованиями.
Эфферентно-афферентная конвергенция - является одним из механизмов формирования в ЦНС аппарата предвидения результатов поведенческого акта — акцептора результатов действия.
Два полушария большого мозга объединяются мозолистым телом, волокна которого связывают идентичные пункты коры большого мозга и обеспечивают единство ее функционирования. У большинства людей доминирующим является левое полушарие, которое обеспечивает функцию речи, контроль за действием правой руки, вербальное, логическое мышление. Такой человек тяготеет к теории, имеет большой запас слов, ему присущи целеустремленность, повышенная двигательная активность, способность предвидеть события.
Правое полушарие головного мозга специализировано для восприятия формы и пространства и участвует в интуитивном мышлении. Доминирование правого полушария проявляется у человека в конкретных видах деятельности, в способности тонко чувствовать и переживать.
| |
| | № 88 Физиология анализаторов. Понятие о сенсорных системах. Строение анализаторов, свойства периферического, проводникового и центрального отделов анализатора. Роль анализаторов в деятельности функциональных систем организма.
Анализатор– совокупность возбудимых структур центральной и периферической нервной системы, осуществляющих восприятие и анализ воздействий окружающей среды и воздействий, исходящих от самого организма.
Понятие о сенсорных системах:
Системы организма, воспринимающие раздражения из окружающей среды с помощью экстерорецепторов. К ним относятся фоторецепторы, слуховые, тактильные, температурные и хеморецепторы, расположенные на поверхностях тела и в начальных отделах пищеварительного тракта и дыхательных путей.
Все структуры, входящие в состав анализаторов, относятся к афферентным, т. е. проводящим возбуждения от периферии в ЦНС. Классические представления Павлова об анализаторе включают в его состав три части: периферический отдел, проводниковый отдел и центральный конец.
Периферический отдел анализатороввключает, как правило, рецепторы, хотя в некоторых анализаторах, например зрительном, в этот отдел могут быть включены и первичные афферентные нейроны. Периферический отдел анализатора является составной частью любого органа чувств, который, помимо рецепторов, включает специальные вспомогательные образования для наилучшего восприятия действующего раздражителя. Например, глаз как орган зрения, помимо сетчатки (фоторецепторы), включает глазное яблоко, его мышцы, веки и др.
Проводниковый отдел анализатороввключает не только нервные волокна, непосредственно отходящие от рецепторов, но и все афферентные нейроны, обеспечивающие первичный анализ и передачу возбуждений в центральный отдел анализатора. Возникающие в рецепторах импульсы возбуждения распространяются по проводящим путям в виде электрических потенциалов. Во всех нервных волокнах потенциалы являются однотипными по внешнему виду, но в потоке импульсов возбуждения в их своеобразном рисунке — паттерне — закодирована специфическая информация о параметрах действующего раздражителя. Анализ этой информации начинается как на уровне первичных афферентных нервных клеток, так и в последующих спинальных, стволовых и подкорковых ядрах.
Центральный отдел анализаторов. Различные проводящие афферентные пути через возбуждение соответствующих подкорковых структур в конечном счете приносят импульсы возбуждения в соответствующие области коры большого мозга, которые считаются высшим центральным конечным звеном любого анализатора. Вместе со специфическим афферентным возбуждением в кору поступает и неспецифическое восходящее возбуждение, которое формируется на уровне подкорковых активирующих структур мозга — ретикулярной формации, гипоталамуса и др.
Передача импульсов от рецепторов по проводящим путям к коре большого мозга осуществляется по цепям нейронов в различных ядрах, расположенных на разных уровнях ЦНС. За счет конвергенции и дивергенции возбуждений в нейронных цепях в этих нервных центрах осуществляются передача и обработка информации.
Роль анализаторов в деятельности функциональных систем:
Физиологические особенности каждого анализатора в отдельности определяются его специфическими структурами передачи возбуждений от рецепторов в ЦНС, участием в системных процессах целого организма. Адекватное поведение живых организмов в окружающей среде не является пассивным отражением воздействующих раздражителей. В большей степени организм настойчиво ищет потребные раздражители и активно к ним стремится, избирательно настраивая по отношению к ним свои анализаторы.
Активное стремление субъектов к раздражителям внешней среды определяется прежде всего их исходными доминирующими потребностями и пропускной способностью к передаче информации соответствующего анализатора. У человека наибольшей пропускной способностью обладает зрительный анализатор, который в единицу времени передает в ЦНСболее 70 % информации; 25—28 % информации доставляет в ЦНС слуховой анализатор и 2—5 % информации — остальные анализаторы.
|
№ 89 Рецепторы. Классификация рецепторов. Основные свойства рецепторов. Закон Вебера-Фехтенера и его анализ.
Рецепторы участвуют впроцессе восприятия и трансформации механической, термической, электромагнитной и химической энергии в нервный сигнал или сложную последовательность мембранных и цитоплазматических процессов.
Существуют различные классификации рецепторов, основанные на их физиологических характеристиках.
Психофизиологическое состояние, связанное с модальностью ощущения, в соответствии с которым выделяют зрительные, слуховые, осязательные, обонятельные, вкусовые, холодовые, тепловые, болевые рецепторы.
Локализация. Большинство сенсорных рецепторов воспринимает раздражения из окружающей среды, т. е. являются внешними, или экстерорецепторами. К ним относятся фоторецепторы, слуховые, тактильные, температурные и хеморецепторы, расположенные на поверхности тела и в начальных отделах пищеварительного тракта и дыхательных путей.
Информация о состоянии внутренней среды организма воспринимается интерорецепторами внутренних органов, сосудов, опорно-двигательного аппарата — мышц, сухожилий, костей, суставов.
Структура рецепторов. Рецепторы могут быть представлены свободными нервными окончаниями; окончаниями, покрытыми особой капсулой (инкапсулированные; иметь вид палочек, колбочек, ветвей, волосков. Некоторые рецепторы объединяются в сложно организованные множества — сетчатку глаза, кортиев орган внутреннего уха и др. В результате рецепции действующего на организм раздражения и поступающей в мозг на ее основе сигнализации формируется субъективно переживаемое ощущение, являющееся источником познания внешнего мира.
Специализация рецепторов. Характерным свойством рецепторов является их высокая генетически детерминированная специализация к восприятию адекватного раздражителя. В соответствии с природой или характером раздражения их делят на:
• тактильные рецепторы кожи;
• слуховые, вестибулярные и гравитационные рецепторы внутреннего уха;
• рецепторы опорно-двигательного аппарата (растяжения, суставные, мышц);
• барорецепторы сердца и сосудов;
• хеморецепторы обоняния, вкуса, кровеносных сосудов и тканей;
• фоторецепторы сетчатки — нервные элементы, возбуждаемые электромагнитными волнами дающие ощущения ахроматического — черно-белого (палочки) и хроматического — цветового (колбочки) видения;
• терморецепторы кожи, внутренних органов и ЦНС, реагирующие на изменения температуры окружающей среды и внутренней среды организма.
Кроме этого, выделяют рецепторы вибрации, рецепторы волосяных фолликулов, ганглиев.
Модальность. Некоторые (мономодальные) рецепторы приспособлены для восприятия лишь одного вида раздражения, например вкусовые рецепторы сладкого; другие (полимодальные) — для восприятия нескольких видов раздражителей, например ноцицепторы кожи, участвующие в формировании болевого ощущения при любом механическом, химическом, температурном повреждающем воздействии.
Дистантные - воспринимают информацию от источника, расположенного на некотором расстоянии от них (зрительные, слуховые)
Контактные— при непосредственном соприкосновении с раздражителем (тактильные).
Чувствительность. Большинство рецепторов обладает высокой чувствительностью по отношению к адекватным раздражителям
Низкопороговые — наиболее чувствительные рецепторы — расположены в коже (тактильные, или осязательные, волоски), в сетчатке глаза (палочки), в обонятельных луковицах.
К высокопороговым — наименее чувствительным — относятся рецепторы сетчатки (колбочки), ответственные за хроматическое (цветовое) зрение, и ноцицепторы кожи, возбуждающиеся при механическом воздействии повреждающей интенсивности.
Адаптация— изменение порога чувствительности рецептора при постоянном действии на него раздражителя.
Закон Вебера-Фехтенера и его анализ:
Для всех органов чувств человека ощущение пропорционально логарифму раздражителя, выраженному в единицах порога ощущения.
Возрастание силы раздражения в геометрической прогрессии стоит в соответствии росту ощущения в арифметической прогрессии. Эта формула измерения ощущений была выведена на основе исследований Вебера, в которых было показано постоянство относительной величины приращения раздражителя, вызывающего ощущение едва заметного различия. При этом был введен собственный постулат о том, что едва заметный прирост ощущения является величиной постоянной и может быть использован в качестве единицы измерения ощущения.
|
№ 90 Зрительный анализатор. Строение вспомогательного аппарата, оптической системы и рецепторного аппарата зрительного анализатора. Фотохимические и электрические явления в сетчатке. Бинокулярное зрение, его физиологический механизм и значение. Цветное зрение. Методы изучения зрительного анализатора.
Светопреломляющие структуры глаза: роговица, радужная оболочка, хрусталик, камерная влага и стекловидное тело - обеспечивают формирование на сетчатке реального, уменьшенного и перевернутого изображения объекта внешнего мира. Радужная оболочка образует зрачок. Светопреломляющая способность хрусталика и диаметр зрачка изменяются при сокращении гладких мышц глаза. Зрачковая реакция на свет является механизмом снижения количества света, падающего на сетчатку при сильном освещении (сужение зрачка), или повышения количества света при слабом освещении за счет увеличения ширины зрачка. Физиологические механизмы опознания зрительных объектов начинаются с первичной обработки зрительной информации в сетчатке глаза, которая является периферической рецепторной структурой зрительного анализатора. Сетчатка расположена на внутренней поверхности задней сферы глазного яблока и состоит из клеток пигментного эпителия, фоторецепторов и четырех слоев, образованных различными нервными клетками.
Фоторецепторы сетчатки: основными зрительными рецепторами, расположенными в сетчатке, являются палочки и колбочки. У человека рецепторный слой сетчатки состоит из 120 млн палочек и 6 млн колбочек. Колбочки воспринимают цвета и функционируют в условиях яркой освещенности объектов, в то время как палочки воспринимают световые потоки в условиях сумерек.
Фоторецепторы сетчатки содержат светочувствительные пигменты, которые обесцвечиваются при действии света. В палочках содержится пигмент родопсин, в колбочках — йодопсин. Процесс преобразования энергии в фоторецепторе начинается с поглощения фотона молекулой пигмента. Конформационное изменение молекул пигмента активирует ионы Са2+, которые посредством диффузии достигают натриевых каналов, вследствие чего проводимость для Na+ снижается. В результате снижения натриевой проводимости возникает увеличение электроотрицательности внутри фоторецепторной клетки по отношению к внеклеточному пространству.
Сетчатка представляет собой довольно сложную нейронную сеть с горизонтальными и вертикальными связями между фоторецепторами и клетками. Биполярные клетки сетчатки передают сигналы от фоторецепторов в слой ганглиозных клеток и к амакриновым клеткам (вертикальная связь). Горизонтальные и амакриновые клетки участвуют в горизонтальной передаче сигналов между соседними фоторецепторами и ганглиозными клетками.
Зрительные пути: Аксоны ганглиозных клеток дают начало зрительному нерву. Правый и левый зрительные нервы сливаются у основания черепа, образуя перекрест, где нервные волокна, идущие от внутренних половин обеих сетчаток, пересекаются и переходят на противоположную сторону. Волокна, идущие от наружных половин каждой сетчатки объединяются вместе с перекрещенным пучком аксонов из контралатерального зрительного нерва, образуя зрительный тракт. Зрительный тракт заканчивается в первичных центрах зрительного анализатора, к которым относятся латеральные коленчатые тела, верхние бугорки четверохолмия и претектальная область ствола мозга.
Латеральные коленчатые тела являются первой структурой ЦНС, где происходит переключение импульсов возбуждения на пути между сетчаткой и корой большого мозга. Нейроны сетчатки и латерального коленчатого тела производят анализ зрительных стимулов, оценивая их цветовые характеристики, пространственный контраст и среднюю освещенность в различных участках поля зрения. В латеральных коленчатых телах начинается бинокулярное взаимодействие от сетчатки правого и левого глаза.
Верхние бугорки четверохолмия. Нервные клетки реагируют на движущиеся световые стимулы, включены в механизмы управления целенаправленным движением глаз.
Бинокулярное зрение - механизм регуляции одновременного движения правого и левого глазных яблок, который управляются нейронами, находящимися как в подкорковых структурах, так и в коре большого мозга. Центры бинокулярного зрения находятся в области ретикулярной формации среднего мозга, в верхних бугорках четверохолмия. Ретикулярная формация среднего мозга является интегрирующим центром, получающим информацию по афферентным путям не только от верхних бугорков четверохолмия, но и от фоторецепторов сетчатки. Ядра глазодвигательных нервов находятся также под влиянием мозжечка. В мозжечке вестибулярные и зрительные сигналы интегрируются с сигналами, отражающими положение головы и глаз.
Цветное зрение: восприятие глазом того или иного тона зависит от длины волны излучения: длинноволновые – красный и оранжевый; средневолновые – желтый и зеленый; коротковолновые – голубой, синий, фиолетовый. За пределами хроматической части спектра располагается невидимое невооруженным глазом ультрафиолетовое излучение. В соответствии с трехкомпонентной теорией цветового зрения нормальное ощущение цвета называется нормальной трихромазией.
Методы изучения зрительного анализатора:
1. определение остроты зрения;
2. исследование периферического (черно – белого) зрения
3. периметрия (определение поля зрения)
4. исследование бинокулярного зрения.
| |
| |
| |
№ 91 Слуховой анализатор. Особенности рецепторного проводникового и коркового отделов анализатора. Механизм передачи звуковых колебаний. Методы исследования слухового анализатора.
Максимальная чувствительность слуха человека лежит в области частот от 1000 до 4000 Гц.
В кортиевом органе различают внутренние и наружные волосковые клетки. Фонорецепторы кортиева органа являются вторично чувствующими рецепторами. Афферентные биполярные слуховые нейроны находятся в спиральном ганглии. От каждой клетки спирального ганглия один отросток идет на периферию к волосковым клеткам кортиева органа, а другой в составе слухового нерва направляется в ЦНС.
Звук вызывает колебания эндолимфы улиткового протока попеременно в сторону вестибулярной и в сторону барабанной лестницы. Результатом такого движения является смещение основной и покровной мембраны кортиева органа относительно друг друга. Сгибание цилий является для волосковых клеток адекватным стимулом. При этом в волосковых клетках возникает рецепторный потенциал, который вызывает высвобождение медиатора. Медиатор действует возбуждающим образом на постсинаптическую мембрану афферентного волокна биполярного нейрона спирального ганглия, что в конечном счете приводит к возникновению потенциалов действия в волокнах слухового нерва.
Отдельные участки улитки воспринимают определенные звуковые частоты. Каждое нервное волокно оптимально возбуждается звуком определенной частоты. У основания кортиева органа расположены рецепторные клетки, воспринимающие низкие звуки; у вершины улитки — рецепторы, воспринимающие высокие звуки.
Слуховые пути: первичные афферентные волокна распространяются сначала к вентральной и дорсальной частям кохлеарного ядра. От вентральной части вентральный тракт направляется к ипси- и контралатеральным оливарным комплексам. Таким образом, нервные клетки в каждом оливарном комплексе получают возбуждения от рецепторов правого и левого уха, что обеспечивает сравнительную оценку акустической информации. Дорсальное кохлеарное ядро служит началом дорсального слухового тракта, волокна которого переходят на противоположную сторону и там образуют синапсы с нейронами ядра латерального лемниска. После переключения в нем слуховой тракт переключается в двух ядрах — нижнем бугорке четверохолмия и медиальном коленчатом теле. Из этих образований возбуждение распространяется к центральному концу анализатора — первичной слуховой области височной доли коры большого мозга.
Подкорковые слуховые центры: первичные афферентные слуховые нейроны спирального ганглия возбуждаются чистыми тонами, т. е. очень простыми звуковыми стимулами. В противоположность этому, чем дальше от улитки по слуховому тракту находятся нейроны, тем более сложные звуковые характеристики их возбуждают. В нижних бугорках четверохолмия имеются клетки, отвечающие только на частотно модулированные тоны со специфическим направлением и различной модуляцией. Другие клетки нижних бугорков четверохолмия отвечают на тоны только в том случае, если меняется их интенсивность.
Корковые центры слухового анализатора: нейронные процессы, лежащие в основе оценки звука разной частоты. Одни нейроны отвечают только на начало звукового стимула, другие — только на его окончание.
Методы исследования слухового анализатора:
1. определение остроты слуха разговорной и шепотной речью;
2. исследование камертонами, воздушная проводимость, костная проводимость.
3. исследование бинаурального (пространственного) слуха.
|
№ 92 Вестибулярный анализатор его строение и функции. Рецепция положения и движения тела. Статические и статокинетические рефлексы.
Вестибулярный анализатор анализирует информацию об ускорениях или замедлениях, возникающих в процессе прямолинейного или вращательного движения тела, а также при изменении положения головы в пространстве. Импульсы от вестибулорецепторов вызывают перераспределение тонуса скелетной мускулатуры. Среди вестибулярных реакций на первом месте находятся статистические и статокинетические реакции, обеспечивающие сохранение равновесия при изменении положения тела и его частей или при возникающих ускорениях во время перемещения тела в пространстве. В осуществлении этих реакций участвуют также и проприорецепторы мышц.
Рецепторы статолитовых органов и полукружных каналов:
Вестибулярный орган состоит из статолитового аппарата и трех полукружных каналов, расположенных во внутреннем ухе в трех взаимно перпендикулярных плоскостях: фронтальной, сагиттальной и горизонтальной. Возбуждающим фактором для вестибулорецепторов, представленных волосковыми клетками, является наклон волосков вследствие смещения отолитовой мембраны при линейных ускорениях. Рецепторные клетки, находящиеся в ампулах, возбуждаются при угловых ускорениях вследствие движения эндолимфы по полукружным каналам. Вестибулорецепторы относятся к вторичночувствующим и связаны через синапсы с афферентными волокнами нейронов вестибулярного ганглия, расположенного в височной кости.
Вестибулярные ганглии и ядра:
От вестибулярных ганглиев волокна вестибулярного нерва направляются в продолговатый мозг. Импульсы, приходящие по этим волокнам, поступают к нейронам бульбарного вестибулярного комплекса: предверное верхнее ядро Бехтерева, предверное латеральное ядро Дейтерса, ядро Швальбе. Из вестибулярных ядер возбуждения направляются по вестибулоспинальному тракту к мотонейронам мышц-разгибателей; непосредственно к мотонейронам шейного отдела спинного мозга; к глазодвигательным ядрам и мозжечку; к ретикулярной формации и через таламус к задней центральной извилине коры большого мозга.
Функциональные связи между вышеуказанными структурами обеспечивают не только поддержание позы человека (сохранение равновесия), но и координацию двигательных актов при выполнении целенаправленной деятельности.
Статические и статокинетические рефлексы:
Эти рефлексы способствуют сохранению позы, в их осуществлении большое значение имеет продолговатый и средний мозг.
Статические рефлексы возникают при изменении положения тела или его частей в пространстве: 1) при изменении положения головы в пространстве — это так называемые лабиринтные рефлексы. возникающие в результате раздражения рецепторов вестибулярного аппарата; 2) при изменении положения головы по отношению к туловищу — шейные рефлексы, с проприорецепторов мышц шеи и 3) при нарушении нормальной позы тела — выпрямительные рефлексы с рецепторов кожи, вестибулярного аппарата и сетчатки глаз. Например, при отклонении головы назад повышается тонус мышц-разгибателей спины, а при наклоне вперед — тонус сгибателей (лабиринтный рефлекс). Выпрямительные рефлексы — это последовательные сокращения мышц шеи и туловища которые обеспечивают возвращение тела в вертикальное положение теменем кверху. У человека они проявляются, например, во время ныряния.
Статокинетические рефлексы компенсируют отклонения тела при ускорении или замедлении прямолинейного движения, а также при вращениях. Например, при быстром подъеме усиливается тонус сгибателей, и человек приседает, а при быстром спуске усиливается тонус разгибателей, и человек выпрямляется — это так называемый лифтный рефлекс. При вращении тела реакции противовращения проявляются в отклонении головы, тела и глаз в сторону, противоположную движению. Движение глаз со скоростью вращения тела, но в противоположную сторону и быстрое возвращение в исходное положение — нистагм глаз — обеспечивают сохранение изображения внешнего мира на сетчатке глаз и тем самым зрительную ориентацию.
| № 93 Обонятельный и вкусовой анализатор. Характеристика рецепторного, проводникового и центрального отделов анализаторов.
Общей особенностью обонятельного и вкусового анализаторов является их способность к анализу внешних химических стимулов и формированию соответствующих обонятельных и вкусовых ощущений. Хемочувствительность рецепторов связана с высокой специфичностью и избирательностью по отношению к молекулам некоторых веществ. Анализаторы обладают большей способностью к адаптации. Постоянно действующий химический стимул достаточно быстро приводит к снижению его восприятия. Наконец, любое пищевое или непищевое вещество, попадающее в ротовую полость, неизбежно несет с собой и запаховый стимул.
Обонятельные рецепторы расположены главным образом в верхней носовой раковине. Они являются первичными биполярными сенсорными клетками, имеющими два отростка: аксон и дендрит, несущий реснички. Запаховое вещество, попадая в носовую полость, вступает в контакт с мембраной ресничек. Сенсорная клетка может реагировать на несколько пахучих веществ, по которым можно построить спектр ответов одиночной обонятельной клетки. Аксоны этих клеток, направляются в обонятельную луковицу и оканчиваются на первичных дендритах отдельной митральной клетки обонятельной луковицы. Импульсы от обонятельных луковиц также поступают в гиппокамп и через амигдалярный комплекс к вегетативным ядрам гипоталамуса.
Вкусовые рецепторы -специализированные сенсорные клетки, наряду с опорными и базальными клетками входящие в состав вкусовых почек. Всего у человека около 2000 вкусовых почек, которые располагаются на вкусовых сосочках языка, имеющих три разные формы: грибовидные, желобоватые и листовидные.
Растворенные в воде вещества, попадающие на поверхность языка, диффундируют через пору вкусовых почек, которые образуют наружные концы сенсорных клеток. Сенсорные клетки относятся к вторичночувствующим рецепторам и отвечают на химическое раздражение формированием рецепторного потенциала. Рецепторный потенциал через синапсы вызывает возбуждение в афферентных волокнах черепных нервов, которые проводят его в мозг.
Проводниковая и центральная часть вкусового анализатора. Афферентные волокна, проводящие возбуждения от вкусовых рецепторов, представлены нервом — барабанной струной (ветвь лицевого нерва), которая иннервирует переднюю и боковые части языка, а также языкоглоточным нервом, иннервирующим заднюю часть языка. Афферентные вкусовые волокна объединяются в солитарный тракт, который заканчивается в соответствующем ядре продолговатого мозга. В нем волокна образуют синапсы с нейронами второго порядка, аксоны которых направляются к вентральному таламусу. Аксоны нейронов третьего порядка проходят через внутреннюю капсулу таламуса и оканчиваются в постцентральной извилине коры большого мозга. В этой области выявлены высокоспецифичные вкусовые нейроны, реагирующие на раздражение веществами, обладающими одним вкусовым качеством.
Основные вкусовые ощущения человека. У человека выявлено четыре четко различимых вкусовых ощущения: сладкое, кислое, соленое и горькое. Эти ощущения связаны со специфической чувствительностью различных участков поверхности языка. Вкус горького ощущается в первую очередь основанием языка, а сладкого — преимущественно кончиком языка. Ощущение кислого и соленого возникает при воздействии вкусовых раздражителей на боковые поверхности языка.
| |
| |
№ 94 Архитектоника функциональной системы целенаправленного поведенческого акта. Исполнительные механизмы системной организации поведенческого акта с позиции теории функциональной системы П. K. Анохина и их характеристики.
ОА – обстановочная афферентация; ПА – пусковая афферентация.
Центральная архитектоника поведенческого акта строится деятельностью головного мозга, являясь атрибутом сложных динамических корково-подкорковых взаимоотношений.
Первой, инициативной стадией центральной архитектоники поведенческого акта является стадия афферентного синтеза, которая состоит из нескольких компонентов.
Ведущим компонентом является доминирующая биологическая мотивация, которая строится на основе нервно-гуморальной сигнализации различными метаболическими потребностями.
Доминирующие биологические мотивации голода, страха, жажды, полового возбуждения и др. за счет восходящих активирующих влияний специальных гипоталамических центров избирательно охватывают различные отделы головного мозга, включая кору. Биологические мотивации могут самостоятельно сформировать поведенческий акт. При этом внешние факторы играют роль ключевых, раскрывающих в определенных условиях генетические механизмы поведенческих актов.
Влияния внешней среды составляют второй компонент афферентного синтеза — обстановочную афферентацию, которая непрерывно поступает в ЦНС при действии разнообразных факторов внешней среды на многочисленные экстерорецепторы живых организмов.
Соотношения доминирующей мотивации и обстановки динамичны, они строятся по принципу доминанты — в первую очередь удовлетворяются биологические или обстановочные воздействия, наиболее значимые для выживания или социальной адаптации.
Третьим компонентом афферентного синтеза является память. Прежде всего это генетическая память, к которой в построении поведения постоянно адресуются врожденные биологические мотивации. Механизмы памяти при определенных условиях могут самостоятельно сформировать поведенческий акт или существенно повлиять на его организацию.
| | № 95 Условные и безусловные рефлексы. Черты их сходства и различия, значение для приспособительной деятельности организма. Методики, условия и правила выработки условных рефлексов. Механизмы о6разования временных связей (И. П. Павлов, П. К. Анохин).
Условные и безусловные рефлексы: смотри №102
Правила выработки условных рефлексов:
1. Наличие у животного потребности и соответствующей мотивации. Например, в случае выработки пищевого условного рефлекса животное должно быть голодным. При формировании оборонительного условного рефлекса животное в ответ на повреждающее безусловное воздействие должно испытывать страх.
2. Условный раздражитель должен обязательно подкрепляться безусловным, т. е. удовлетворением жизненно важной потребности.
3. Условный раздражитель должен предшествовать подкреплению.
4. Условный раздражитель должен восприниматься животным, т. е. первоначально вызывать ориентировочно-исследовательскую деятельность. Условный раздражитель должен нести в себе экологическую значимость для животного, восприниматься им. Так, у рыб в качестве условных раздражителей более адекватными являются движение воды, изменение ее состава и др. Для высших животных это могут быть световые, звуковые, обонятельные и другие сенсорные раздражители.
5. Подкрепление по своей биологической значимости и силе должно быть сильнее условного раздражителя.
6. Условный раздражитель должен неоднократно сочетаться с безусловным подкреплением.
7. При выработке соответствующего условного рефлекса у животных должны отсутствовать конкурирующие мотивации. Например, в случае выработки пищевого условного рефлекса у животного не должен быть переполнен мочевой пузырь или животное не должно подвергаться каким-либо повреждающим воздействиям.
8. Наконец, субъект, у которого вырабатываются условные рефлексы, должен быть здоров.
Механизмы образования временных:
Павлов связывал образование условных рефлексов главным образом с деятельностью коры большого мозга, хотя он не отрицал участия в этом процессе и ближайших подкорковых образований. Он рассматривал процесс образования условного рефлекса как взаимодействие двух дуг возбуждений: дуги условного и безусловного рефлексов. Между этими дугами, при повторных сочетаниях образуется временная связь.
Павлов обозначил ее «временной», так как при отсутствии подкрепления она быстро разрушается и условный рефлекс исчезает. Временная связь между условным раздражением и подкреплением формируется в коре большого мозга между пунктами (очагами) представительства условного сигнала и безусловного подкрепления. Образованию условнорефлекторной временной связи в коре большого мозга способствуют доминантные отношения. При этом корковый «очаг» безусловного подкрепления, будучи доминантным, притягивает к себе возбуждения, ранее вызванные условным раздражителем. Именно эти свойства способствуют образованию временной связи между пунктами условного и безусловного раздражений коры больших полушарий. Вследствие этого условный раздражитель начинает вызывать условнорефлекторный ответ.
| № 96 Условные и безусловные рефлексы. Системная организация врожденного и приобретенного поведения.
Павлов предложил рассматривать два вида поведенческих рефлексов — безусловные и условные. Безусловные рефлексы— врожденные. Безусловные рефлексы возникают на основе врожденных рефлекторных дуг. При действии адекватных раздражителей на соответствующие рецепторы безусловные рефлексы проявляются относительно постоянно.
К сложным безусловным рефлексам относятся пищевые, оборонительные, половые, ориентировочно-исследовательские, родительские и др. Следует особо выделить ориентировочно-исследовательскую деятельность— реакцию животных на неожиданные, как правило, новые раздражители. Сложные безусловные рефлексы проявляются в виде специфических поведенческих реакций животных при действии на них соответствующих раздражителей. Наиболее демонстративен в этом плане сложный пищевой рефлекс. Он проявляется при действии пищи на дистантные рецепторы или на рецепторы пищеварительного тракта животного в двигательной, а также секреторной и других вегетативных реакциях — изменении дыхания, деятельности сердца и др. Сложный оборонительный рефлекс наряду с двигательной реакцией животного включает также изменение ряда вегетативных функций: секреторной деятельности пищеварительных желез, деятельности сердца, дыхания, потоотделения и т. д.
Условный рефлекс — приобретаются живыми существами в индивидуальной жизни. Они связаны с обучением. Это чрезвычайно изменчивая форма рефлекторной деятельности. Ответное действие животного определяется не самим стимулом, а возникает в результате неоднократного совпадения того или иного внешнего (условного) стимула с жизненно важной деятельностью (безусловными рефлексами). Тогда ранее относительно индифферентный стимул начинает опережающе вызывать реакцию, характерную для безусловного раздражителя. Иными словами, в выработанном условном рефлексе условный стимул опережающе отражает свойства сочетанного с ним безусловного раздражителя.
Непременным условием образования условных рефлексов является подкрепление, когда ранее индифферентный раздражитель неоднократно сочетается с последующим безусловным рефлексом.
Другой принцип, характеризующий условнорефлекторную деятельность – принцип сигнальности. Ответная реакция организма при действии не него раздражитеоя несет в себе свойства будущего безусловного воздействия. Условный раздражитель сигнализирует о последующие безусловном рефлексе.
Условные рефлексы классифицируют:
- по названию условных раздражителей — световые, звуковые, обонятельные, тактильные;
- по названию анализатора, воспринимающего условный раздражитель, — зрительные, слуховые, кожные;
- по характеру подкрепления — пищевые, оборонительные, половые;
- по методу выработки — коротко- и длительноотставленные, запаздывательные, следовые и совпадающие.
При короткоотставленных условных рефлексах интервал между условным раздражителем и подкреплением обычно равен 10—20 с и не превышает 30 с. В длительноотставленных условных рефлексах этот интервал составляет более 30 с. В запаздывательных условных рефлексах интервал между условным сигналом и подкреплением равен 3 мин. В следовых условных рефлексах подкрепление предоставляется животному после прекращения действия условного раздражителя. При совпадающих условных рефлексах условный сигнал и подкрепление предоставляются животному одновременно.
| |
|
| |
|