![]()
|
|||||||
Совместные и несовместные события. Противоположные события. Полная группа событий.Конспект
Теория вероятностей. Что изучает эта наука (вернее раздел математики)? Все мы пользовались такими выражениями, как «вероятность дождя велика», «вероятность выигрыша в лотерею мала», «орёл и решка выпадают с вероятностью 50 на 50» и т.п. Но тогда сразу возникает вопрос, при чём здесь наука? Пожалуйста, прямо сейчас возьмите в руки монету и скажите, какой гранью она выпадет после броска? Сможем ответить на этот вопрос?…Совсем не похоже на теорию – скорее какое-то гадание…. И действительно, обывательское понимание вероятности больше смахивает на некое предсказание, часто с изрядной долей мистицизма и суеверий. Мы с вами не можем угадать результат броска той же монеты в единичном эксперименте. Однако если одну и ту же монету в одинаковых условиях подбрасывать сотни и тысячи раз, то будет прослеживаться чёткая закономерность, описываемая вполне жёсткими законами.Знание этих закономерностей позволяют человеку уверенно чувствовать себя при встрече со случайными событиями. Подытожим:Теория вероятностей изучает вероятностные закономерности массовыходнородных случайных событий. Рассмотрим основные понятия теории вероятности. Достоверным называют событие, которое в результате испытания (осуществления определенных действий, определённого комплекса условий) обязательно произойдёт. Например, в условиях земного тяготения подброшенная монета непременно упадёт вниз. Невозможным называют событие, которое заведомо не произойдёт в результате испытания. Пример невозможного события: в условиях земного тяготения подброшенная монета улетит вверх. И, наконец, событие называется случайным, если в результате испытания оно может, как произойти, так и не произойти, при этом должен иметь место принципиальный критерий случайности: случайное событие – есть следствие случайных факторов, воздействие которых предугадать невозможно или крайне затруднительно. Другая важная характеристика событий – это их равновозможность. Два или большее количество событий называют равновозможными, если ни одно из них не является более возможным, чем другие. Например: выпадение орла или решки при броске монеты; Могут ли быть те же события не равновозможными? Могут! Например, если у монеты или кубика смещён центр тяжести, то гораздо чаще будут выпадать вполне определённые грани. Совместные и несовместные события. Противоположные события. Полная группа событий. События называют несовместными, если в одном и том же испытании появление одного из событий исключает появление других событий. Простейшим примером несовместных событий является пара противоположных событий. Событие, противоположное данному, обычно обозначается той же латинской буквой с чёрточкой вверху. Например:
Совершено ясно, что в отдельно взятом испытании появление орла исключает появление решки (и наоборот), поэтому данные события и называются несовместными. Противоположные события легко формулируются из соображений элементарной логики: в результате броска игрального кубика выпадет 5 очков; Либо пять, либо не пять – третьего не дано, т.е. события несовместны и противоположны. Множество несовместных событий образуют полную группу событий, если в результате отдельно взятого испытания обязательно появится одно из этих событий. Очевидно, что любая пара противоположных событий (в частности, примеры выше) образует полную группу.
События Ещё одно важное понятие, которое нам скоро потребуется – это элементарность исхода (события). Если совсем просто, то элементарное событие «нельзя разложить на другие события». Например, события Совместные события менее значимы с точки зрения решения практических задач, но обходить их стороной не будем. События называются совместными, если в отдельно взятом испытании появление одного из них не исключает появление другого. Например:
Ситуация, конечно, довольно редкая, но совместное появление всех трёх событий в принципе не исключено. Следует отметить, что перечисленные события совместны и попарно, т.е. может быть только ливень с грозой или грибной дождик, или погромыхает неподалёку на фоне ясного неба. Независимымиявляются события, если вероятность наступления любого из них не зависит от появления/непоявления остальных событий рассматриваемого множества (во всех возможных комбинациях).
Итак, достоверное событие – это событие, наступающее при данных условиях со стопроцентной вероятностью (т.е. наступающее в 10 случаях из 10, в 100 случаях из 100 и т.д.). Невозможное событие – это событие, не наступающее при данных условиях никогда, событие с нулевой вероятностью. Вероятность события – это центральное понятие теории вероятностей. Существует несколько подходов к её определению: Классическое определение вероятности; Мы с вами остановимся на классическом определении вероятностей, которое находит наиболее широкое применение в учебных заданиях. Обозначения. Вероятность некоторого события
Классическое определение вероятности: Вероятностью наступления события
При броске монеты может выпасть либо орёл, либо решка – данные события образуют полную группу, таким образом, общее число исходов Принято использовать доли единицы, и, очевидно, что вероятность может изменяться в пределах
|
|||||||
|