Хелпикс

Главная

Контакты

Случайная статья





Неравенства с параметром.. Пример 1.. Решить неравенство 5х – а > ax + 3.. Пример 2.. Решить неравенство х(а – 2) / (а – 1) – 2а/3 ≤ 2х – а при а ≠ 1.. Пример 3.. Решить неравенство |1 + x| ≤ аx относительно х.



Неравенства с параметром.

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры. Именно поэтому, овладев методами решения задач с параметрами, вы успешно справитесь и с другими задачами.

Неравенства, которые имеют вид ax > b, ax < b, ax ≥ b, ax ≤ b, где a и b – действительные числа или выражения, зависящие от параметров, а x – неизвестная величина, называются линейными неравенствами.

Принципы решения линейных неравенств с параметром очень схожи с принципами решения линейных уравнений с параметром.

Пример 1.

Решить неравенство 5х – а > ax + 3.

Решение.

Для начала преобразуем исходное неравенство:

5х – ах > a + 3, вынесем за скобки х в левой части неравенства:

(5 – а)х > a + 3. Теперь рассмотрим возможные случаи для параметра а:

Если a > 5, то x < (а + 3) / (5 – а).

Если а = 5, то решений нет.

Если а < 5, то x > (а + 3) / (5 – а).

Данное решение и будет являться ответом неравенства.

Пример 2.

Решить неравенство х(а – 2) / (а – 1) – 2а/3 ≤ 2х – а при а ≠ 1.

Решение.

Преобразуем исходное неравенство:

х(а – 2) / (а – 1) – 2х ≤ 2а/3 – а;

-ах/(а – 1) ≤ -а/3. Домножим на (-1) обе части неравенства, получим:

ах/(а – 1) ≥ а/3. Исследуем возможные случаи для параметра а:

1 случай. Пусть a/(а – 1) > 0 или а ? (-∞; 0)ᴗ(1; +∞). Тогда x ≥ (а – 1)/3.

2 случай. Пусть a/(а – 1) = 0, т.е. а = 0. Тогда x – любое действительное число.

3 случай. Пусть a/(а – 1) < 0 или а ? (0; 1). Тогда x ≤ (а – 1)/3.

Ответ: х ? [(а – 1)/3; +∞) при а ? (-∞; 0)ᴗ(1; +∞);
х ? [-∞; (а – 1)/3] при а ? (0; 1);
х ? R при а = 0.

Пример 3.

Решить неравенство |1 + x| ≤ аx относительно х.

Решение.

Из условия следует, что правая часть неравенства ах должна быть не отрицательна, т.е. ах ≥ 0. По правилу раскрытия модуля из неравенства |1 + x| ≤ аx имеем двойное неравенство

-ах ≤ 1 + x ≤ аx. Перепишем результат в виде системы:

{аx ≥ 1 + x;
{-ах ≤ 1 + x.

Преобразуем к виду:

{(а – 1)x ≥ 1;
{(а + 1)х ≥ -1.

Исследуем полученную систему на интервалах и в точках (рис. 1):

 

При а ≤ -1 х ? (-∞; 1/(а – 1)].

При -1 < а < 0 x ? [-1/(а – 1); 1/(а – 1)].

При а = 0 x = -1.

При 0 < а ≤ 1 решений нет.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.