|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Задача К2 ⇐ ПредыдущаяСтр 5 из 5 Рис. К1
и при t=1 c : V1x = 2 см/c, V1y = 2 см/c, V1 = 2,83 см/c. (3) Аналогично найдем ускорение точки :
и при t=1 c a1x = 0 см/c2, a1y = 2 см/c2, a1 = 2 см/c2. (4)
Касательное ускорение найдем, дифференцируя по времени равенство V2=V2x+V2y. Получим
и . (5)
Числовые значения всех величин, входящих в правую часть выражения (5), определены и даются равенствами (3) и (4). Подставив в (5) эти числа, найдем сразу, что при t1=1 c a1t= 1,4 см/с2. Нормальное ускорение точки . Подставляя сюда найденные числовые значения a1 и a1t, получим, что при t1= 1 а1n= 1,43 см/с2. Радиус кривизны траектории r = V2/an. Подставляя сюда числовые значения V1 и a1n, найдем, что при t1=1 c r1 =5,59 см. Задача К2 Механизм состоит из ступенчатых колес 1, 2, связанных ременной передачей, зубчатой рейки 3 и груза 4, привязанного к концу нити, намотанной на одно из колес (рис. К2.0 - К2.9, табл. К2). Радиусы ступеней колес равны соответственно : у колеса 1- r1 = 2 см, R1 = 4 см, у колеса 2 - r2 = 6 см, R2 = 8 см. На ободьях колес расположены точки А и В.
В столбце “Дано” таблицы указан закон движения или закон изменения скорости ведущего звена механизма, где j1(t) - закон вращения колеса 1, s3(t) - закон движения рейки 3, w2(t) - закон изменения угловой скорости колеса 2, v4(t) - закон изменения скорости груза 4 и т.д. (везде j выражено в радианах, s - в сантиметрах, t - в секундах). Положительное направление для j и w - против хода часовой стрелки, для s3, s4 и v3, v4 - вниз. Определить в момент времени t1 = 2 c указанные в таблице в столбцах “Найти” скорости (v - линейные, w - угловые) и ускорения (а- линейные, e - угловые) соответствующих точек или тел (v4 - скорость груза 4 и т.д.). Указания. Задача К2 - на исследование вращательного движения
Таблица К2
твердого тела вокруг неподвижной оси. При решении задачи учесть, что, когда два колеса находятся в зацеплении, скорость точки зацепления каждого колеса одна и та же, а когда два колеса связаны ременной передачей, то скорости всех точек ремня и, следовательно, точек, лежащих на ободе каждого из этих колес, в данный момент времени численно одинаковы; при этом считается, что ремень по ободу колеса не скользит. Пример К2. Рейка 1, ступенчатое колесо 2 с радиусами R2 и r2 и колесо 3 радиуса R3, скрепленное с валом радиуса r3, находятся в зацеплении; на вал намотана нить с грузом 4 на конце ( рис. К2). Рейка движется по закону s1=f( t ). Дано: R2=6 см, r2=4 см, R3=8 см, r3=3 см, s1=3t3 (s - в сантиметрах, t - в секундах), А - точка обода колеса 3, t1=3 c. Определить: w3, v4, e3, aA , в момент времени t=t1. Рис.К2 Решение.Условимся обозначать скорости точек, лежащих на внешних ободах колес (радиуса Ri), через vi, а точек, лежащих на внутренних ободах (радиуса ri), - через ui. Определяем сначала угловые скорости всех колес как функции времени t. Зная закон движения рейки 1, находим ее скорость: v1 = = 9t2. (1) Так как рейка и колесо 2 находятся в зацеплении, то v2=v1 или w2R2=v1. Но колеса 2 и 3 тоже находятся в зацеплении, следовательно, u2=v3 или w2r2=w3R3. Из этих равенств находим , . (2) Тогда для момента времени t1=3 c получим w3=6,75 c-1. Определяем v4. Так как v4=vB=w3r3, то при t1=3 c v4=20,25 см/c. Определяем e3. Учитывая второе из равенств (2), получим e3= = 1,5t. Тогда при t1=3 c e3=4,5c-2. Определяем aA. Для точки А , где численно at A=R3e3, anA=R3w32. Тогда для момента времени t1=3 c имеем at A= 36 см/c2, anA = 364 см/c2; =366 см/c2. Все скорости и ускорения точек, а также направления угловых скоростей показаны на рис.К2.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|