|
|||
Элементы пирамиды ABCDE. Правильная пирамида SABCD. Прямоугольная пирамида FABCDЭлементы пирамиды ABCDE апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины А; боковые грани — треугольники, сходящиеся в вершине пирамиды; боковые ребра — общие стороны боковых граней; вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания; высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра) (Н); диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания; основание — многоугольник, которому не принадлежит вершина пирамиды. Правильная пирамида SABCD Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания. Тогда она обладает такими свойствами: боковые ребра правильной пирамиды равны; в правильной пирамиде все боковые грани — равные равнобедренные треугольники; в любую правильную пирамиду можно как вписать, так и описать около неё сферу; Прямоугольная пирамида FABCD Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды. Усечённая пирамида Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию. Боковая поверхность — это сумма площадей боковых граней. Для нахождения боковой поверхности в правильной пирамиде можно использовать формулу: Sб.п.= 1/2•Р•ℓ Полная поверхность — это сумма площади боковой поверхности и площади основания. Для нахождения полной поверхности в правильной пирамиде можно использовать формулу: Sп.п. = 1/2•Р•ℓ+Sосн. Объем пирамиды (любой) может быть вычислен по формуле: V = 1/3•Sосн.•Н Решение задач:
|
|||
|