Хелпикс

Главная

Контакты

Случайная статья





Внешние изображения



Так выглядят фибробласты меченые зеленым флуоресценцентным красителем

Индуцированные гепатоциты[править | править код]

Получение клеток печени из ИПСК[править | править код]

Гепатоциты человека имеют очень ограниченную способность к восстановлению после повреждений печени. Поэтому трансплантация печени нередко является единственным способом лечения таких болезней как цирроз. Клеточная терапия печени затрудняется тем, что культура гепатоцитов плохо размножается in vitro.[354] Поэтому удобнее размножить клетки в виде ИПСК, и только затем превратить их в гепатоциты.[355] Разработано несколько способов получения гепатоцитов из ИПСК[356][357][358][359][360][361][362][363][364] Так, например для очистки и размножения самообновляющихся гепатобласт-подобных клеток из человеческих плюрипотентных стволовых клеток (ЭСК/ИПСК), их культивировали на чашках покрытых человеческим ламинином-111 в течение более 3 месяцев, после чего они подобно овальным клеткам печени были способны дифференцироваться в гепатоцит-подобные клетки, а также в клетки желчных путей — холангиоцит-подобные клетки. Было показано, что такие гепатобласт-подобные клетки могут интегрироваться в паренхиму печени мыши. Предполагается, что, благодаря подавлению неблагоприятных генных регуляторных сетей при культивировании на поверхности покрытой ламинином, гепатоциты имеют большое сходстве с взрослыми гепатоцитами и могут быть использованы для скрининга лекарственных средств, а также в качестве источника клеток для регенеративной терапии печени[365][366].

В 2010 году была продемонстрирована возможность индуцировать полученные из жировой ткани стромальные клетки (ASC) в клетки похожие по ряду функций на гепатоциты человека, способные прижиться в поврежденной токсинами печени мыши[367][368]. Позднее был разработан быстрый (до десяти дней) и эффективный (с выходом более 50 процентов) способ превращать клетки полученные путём липосакции в клетки печени. Клетки, полученные из собственных клеток человека с помощью этой новой методики, превращаются в клетки печени без промежуточной фазы плюрипотентных клеток и, очевидно, не образуют опухоли. В печени они формируют многоклеточные структуры необходимые для образование желчных протоков. Особенностью этой методики является культивирование адипоцитов в жидкой суспензии, в которой они образуют сфероиды[369]

Обнаруженная у совместной культуры гепатоцитов, полученных из ИПСК, с эндотелиальными (для образования сосудов) и мезенхимальными (для образования поддерживающего внеклеточного матрикса[370][371]) клетками, способность к самоорганизации (самосборке) в трёхмерные шарообразные структуры, представляющие собой зачаток печени[372] позволяет надеяться, что в будущем трансплантологам: не надо будет искать и ждать донора, больному будут пересаживать зачаток нужного органа, полученный из его же собственных клеток, и этот зачаток будет уже на месте дорастать до нужных размеров.[373] Эта методика позволяет использовать клетки всего одной мыши для предварительной проверки 1.000 лекарственных препаратов на их пригодность для лечения болезней печени, что открывает новые возможности для медицинских исследований и проверки безопасности лекарств[374].

Методы получения гепатоцитов без использования ИПСК[править | править код]

Для получения гепатоцитов из человеческих фибробластов не обязательно вначале получить ИПСК. Используя небольшие молекулы можно добиться прямого перехода фибробластов в индуцированные мультипотентные прогениторные клетки (iMPC) из которых затем образуются сначала прогениторные клетки эндодермы, а затем гепатоциты. После трансплантации мышкам с иммунодефицитом и смоделированным поражением печени, клетки iMPC интенсивно размножаются и приобретают функциональные способности характерные для взрослых гепатоцитов. Важно отметить, что при этом не наблюдалось образование опухолей, потому что клетки не проходили через стадию плюрипотентного состояния[375]. С помощью инфицирования лентивирусами, вызывающими экспрессию генов FOXA3[en], HNF1A[en] и HNF4A, удалось осуществить прямое преобразование фибробластов человека во взрослые гепатоцито-подобные клетки, которые могут быть размножены в культуре, а затем использованы для лечения острой печеночной недостаточности и метаболической болезни печени.[376].

Инактивация сигнального пути Hippo in vivo с высокой эффективностью приводит к дедифференцировке взрослых гепатоцитов в клетки, несущие характеристики прогениторных клеток. Эти клетки-предшественники продемонстрировали способность к самообновлению и смогли прижиться в печени. Эти данные продемонстрировали беспрецедентный уровень фенотипической пластичности зрелых гепатоцитов[377]

Коктейль из малых молекул, Y-27632, A-83-01 и CHIR99021, может превратить зрелые гепатоциты крысы и мыши in vitro в пролиферативные бипотентные клетки — CLiPs (chemically induced liver progenitors — химически индуцированные клетки-предшественники печени). CLIPS могут дифференцироваться как в зрелые гепатоциты, так и в эпителиальные клетки желчных протоков, которые могут образовывать функциональные структуры протоков. При длительном культивировании CLIPS не теряют свою пролиферативную активность и способность дифференциации в клетки печени, и могут заселять хронически пораженные ткани печени[378].

Подробнее см. обзор:[379]

Крипта кишечника. На дне крипт располагаются недифференцированные бескаёмчатые энтероциты являющиеся наиболее подходящим и доступным источником для перепрограммирования в инсулин-продуцирующие клетки

.

Клетки продуцирующие инсулин[править | править код]

Осложнения сахарного диабета, такие как сердечно-сосудистые заболевания, ретинопатия, невропатия, нефропатия и заболевания периферического кровообращения обусловлены дисрегуляцией сахара в крови из-за недостаточной продукции инсулина панкреатическими бета-клетками и при отсутствии адекватного лечения могут привести к летальному исходу. Одним из перспективных подходов к лечению диабета является трансплантация β-клеток[en], источником которых могли бы стать плюрипотентные стволовые клетки, (в том числе ЭСК и ИПСК)[380][381]. Однако β-клетки, получаемые из плюрипотентных стволовых клеток, имеют фенотип характерный для функционально незрелых β-клеток эмбрионального типа и отличаются от взрослых β-клеток повышенным уровнем базальной секреции глюкозы и отсутствием способности реагировать на сигналы стимуляции её синтеза (что подтверждают и результаты секвенирования РНК транскриптов).[382]

Избыточная экспрессия комбинации трёх транскрипционных факторов (PDX1[en], NGN3 и MAFA[en]) называемой PNM, способна привести к трансформации некоторых видов клеток в состояние подобное β-клеткам.[383] Оказалось, что наиболее подходящим и доступным источником для перепрограммирования в инсулин-продуцирующие клетки, является эпителий кишечника. Под действием PNM трёхмерная культура зачатков органа (так называемые органоиды) стимулирует превращение эпителиальных клеток кишечника в β-подобные клетки, которые можно использовать для трансплантации[384].

Биоинженерия клеток кровеносных сосудов[править | править код]

Кровеносные сосуды образуют обширные сети, которые в течение всей жизни обеспечивают клетки организма питательными веществами и кислородом. Когда кровеносные сосуды становятся старше, их структура и функции, нередко, отклоняются от нормы, способствуя тем самым многочисленным возрастным заболеваниям, таким как: инфаркт миокарда, ишемический инсульт и атеросклероз артерий, питающих сердце, мозг и нижние конечности. Поэтому, важной задачей является стимулирование роста сосудов для обеспечения циркуляции, чтобы предотвратить обострение этих заболеваний. Одним из способов стимулирования роста сосудов является имплантация индуцированных прогениторных клеток эндотелия (иПЭк).[284] Так, например, с помощью иПЭк, полученных путём частичного репрограммирования клеток эндотелия, удалось добиться увеличения коронарного кровотока и по данным эхокардиографии улучшить функционирование сердца[385]. Стволовые клетки, извлеченные из жировой ткани после липосакции можно превратить в прогениторные гладкие мышечные клетки (иПГМк), участвующие в формировании артерий и вен. Это клетки могут быть использованы для создания кровеносных сосудов, необходимых для замены неисправных артерий сердца[386]. Так, например, обнаружено, что с помощью культуры ИПСК человека в сочетании с селекцией с помощью трёх маркеров: CD34 (поверхностного гликофосфопротеина ранних эмбриональных фибробластов), NP1 (рецептора — нейрофилин1) и KDR (киназы содержащей домен рецептора), удалось получить эндотелиальные клетки, которые после трансплантации мышам образовали in vivo стабильные функциональные кровеносные сосуды, работавшие на протяжении по меньшей мере 280 дней.[387].

При лечении инфаркта миокарда важно предотвратить образование фиброзных тканей шрама и стимулировать регенерацию. Достичь этого in vivo можно применив паракринные факторы способные изменить направление дифференцировки сердечных стволовых клеток предшественников от специализации в фиброзную рубцовую ткань в сторону образования сердечно-сосудистой ткани. Например, на мышиной модели инфаркта миокарда, было показано, что однократная интрамиокардиальная инъекция мРНК фактора роста эндотелия сосудов (VEGF-A modRNA), синтетически модифицированной так чтобы предотвратить её деградацию организмом, приводит к длительному улучшению функции сердца, обусловленному перенаправлением дифференцировки эпикардиальных клеток-предшественников в сердечно-сосудистый тип клеток[388].

Мервин Иодер с соавт., описали метод для преобразования ИПСК человека в клетки, подобные эндотелиальным колониеобразующим клеткам пуповинной крови (CB-ECFCs). Полученные ими CB-ECFC-подобные клетки имели стабильный эндотелиальный фенотип, высокий пролиферативный потенциал и способность, при трансплантации мышкам, образовывать человеческие кровеносные сосуды, а также участвовать в регенерации сетчатки и конечностей мыши после ишемии. Важно отметить, что индуцированные CB-ECFC-подобные клетки практически не образуют тератомы[389].

Прямое перепрограммирование клеток взрослого организма в прогениторные нефроны (ИПН)[править | править код]

Взрослые клетки проксимальных канальцев почки могут быть непосредственно перепрограммированы в прогениторные нефроны эмбриональной почки, с использованием пула из шести генов кодирующих «инструктирующие» факторы транскрипции (SIX1, SIX2, OSR1, Eyes absent homolog 1(EYA1), Homeobox A11 (HOXA11) и Snail homolog 2 (SNAI2)).[390] Возможность получения таких клеток позволит в будущем приступить к разработке методов клеточной терапии почечных заболеваний. Первые успехи на этом пути уже есть. Так, недавно было показано, что эмбриональные органоиды почки, сформированные путём самоорганизации из клеточной суспензии, после трансплантации их во взрослую почку крысы могут в ней прижиться.[391]

Биоинженерия стволовых клеток крови[править | править код]

Одной из самых востребованных целей регенеративной медицины является возможность получения в неограниченном количестве гемопоэтических стволовых клеток, пригодных для трансплантации, из более зрелых или дифференцированных клеток крови, для того чтобы покрыть дефицит трансплантатов костного мозга. Чтобы запустить в фибробластах процессы гемопоэза в условиях in vitro достаточно всего четырёх транскрипционных факторов: Gata2, Gfi1b, cFos, и Etv6 . Их воздействие приводит к образованию клеток подобных эндотелиальным — прогениторным клеткам с последующим возникновением из них кроветворных клеток[392]. Аналогичным образом, используя 6 транскрипционных факторов: Run1t1, Hlf, Lmo2, Prdm5, Pbx1, и Zfp37, а также ещё два фактора Mycn и Meis1 для повышения эффективности перепрограммирования, удалось получить гемопоэтические стволовые клетки из зрелых дифференцированных клеток крови[393].

См. также обзоры:[394][395]

Эритроциты[править | править код]

Переливание эритроцитов необходимо для многих пациентов с травмами или гематологическими заболеваниями. Однако, на сегодняшний день, поставка эритроцитов зависит от добровольных доноров число которых недостаточно. Кроме того, переливание крови от доноров сопряжено с определённым риском из-за возможности передачи ряда инфекций. Решить эту проблему могло бы производство необходимых количеств эритроцитов вне организма[396][397]. В принципе уже доказано, что эритроциты, полученные вне организма из мобилизованных CD34-позитивных клеток (CD это на англ. сокращенно кластер дифференцировки), способны выжить при переливании аутологичному реципиенту[398]. Эритроциты, получаемые in vitro, как правило, содержат исключительно зародышевый гемоглобин (HbF), который непригоден для нормального функционирования эритроцитов во взрослом организме.[399] Тем не менее, in vivo, после трансфузии полученных из ИПСК эритроидных прогениторных клеток содержащих ядро, наблюдалось переключение на синтез взрослой изоформы гемоглобина[400]. Однако в этом случае возникает другая проблема: несмотря на то, что эритроциты не имеют ядер, и, следовательно, не могут образовывать опухоли, их непосредственные предшественники эритроидные прогениторные клетки ядром обладают и следовательно потенциально опасны. Созревание эритробластов в функционально зрелые эритроциты требует сложного процесса реорганизации, который заканчивается удалением ядра с образованием безъядерных эритроцитов[401]. Увы, методы перепрограммирования клеток в настоящее время часто приводят к нарушению этих процессов энуклеации и поэтому использование эритроцитов или их непосредственных предшественников эритробластов для переливания ещё недостаточно защищено от возможности образования опухолей. Тем не менее Bouhassira и его коллеги обнаружили, что кратковременное воздействие цитокинов, благоприятствующих дифференцировке стволовых клеток в эритроидные, на CD34 позитивные клетки, до их размножения с последующей пролиферацией полученных предшественников, позволяет получать на порядок больший выход эритроидных клеток, чем наблюдалось ранее. И что самое главное: эти красные кровяные клетки имели те же изоформы глобина что и использованные в качестве источника CD34 позитивные клетки[402][403]. Значительно повысить выход эритроидных клеток из ИПСК или же эритроцитов из человеческих гемопоэтических стволовых клеток позволяет подавление гена SH2B3 или его инактивация генным редактированием с помощью CRISPR/Cas9[404]

Интересно также отметить, что важную роль в развитии нормальных клеток крови играет сигнальный путь рецептора арил-углеводородов (AhR) (который как было установлено, содействует и образованию раковых клеток[405]). Активация AhR в человеческих гемопоэтических клетках-предшественницах (HPS) приводит к беспрецедентной пролиферации HPS, мегакариоцитов и клеток эритроидных линий.[406].

Подробный обзор методов получения эритроцитов см. в[407][408][409][410]

Тромбоциты[править | править код]

Тромбоциты играют важную роль в предотвращении кровоизлияния у больных с тромбоцитопенией или с тромбоцитемией. Серьезной проблемой для пациентов после повторных переливаний тромбоцитов является развитие иммунных реакций. Поэтому для клиники большое значение имеет возможность получения тромбоцитов, не содержащих HLA-антигены, вне организма и на средах, не содержащих сыворотки. Некоторых успехов в этом направлении добились Figueiredo с соавторами. Используя РНК-интерференцию для подавления синтеза β2-микроглобулина в CD34-положительных клетках, они сумели получить тромбоциты, в которых на 85 % было снижено содержание антигенов HLA[411]. Позднее удалось получить неиммуногенные по HLA класса I тромбоциты, которые кроме того не активируют NK-клетки[412]

Разработан метод получения тромбоцитов, который заключается в создании из ИПСК человека устойчивых иммортализованных линий клеток-предшественников мегакариоцитов (imMKCLs) путём доксициклин-зависимой гиперэкспрессии Bmi1 и BCL-XL[en]. Полученные imMKCLs можно размножать и культивировать в течение длительного периода (4—5 месяцев), причем даже после криоконсервации. Прекращение сверхэкспрессии c-MYC, Bmi1 и Bcl-X L (путём удаления доксициклина из среды) заставляло эти клетки производить тромбоциты CD42b+, которые по большинству параметров не отличались от тромбоцитов крови[413].

Альтернативный подход получения мегакариоцитов, с высоким выходом (3 единицы (2.4 × 1011 тромбоцитов на единицу) тромбоцитов для переливания с одного миллиона клеток ИПСК) и с чистотой более 90 %, позволяет культивирование на среде без продуктов животного происхождения (а потому с достаточно определёнными, предсказуемыми условиями, что важно для получения надёжно воспроизводимых результатов). Для перепрограммирования использовалась лентивирусная трансдукция, приводящая к одновременной экзогенной экспрессии трех факторов транскрипции: GATA1, FLI1 и TAL1[414].

Обзор по проблемам связанным с производством тромбоцитов см.[415][416]

Иммунные клетки[править | править код]

Вырабатываемый иммунной системой специализированный тип белых кровяных клеток, известный как цитотоксические Т-лимфоциты (CTL), способен распознать специфические маркеры на поверхности различных инфекционных или опухолевых клеток и уничтожить эти вредоносные клетки. Поэтому иммунотерапия с использованием антиген-специфических Т-клеток в будущем может быть использована для борьбы со многими видами рака и вирусных инфекций[417]. Организм производит очень мало таких клеток и выделить их в количестве необходимом для терапии очень сложно. Потенциально эффективным подходом получения этих клеток для терапии может быть технология заключающаяся в том чтобы превратить зрелые CTL в ИПСК, которые обладают способностью к неограниченной пролиферации in vitro, размножить эти ИПСК до необходимого количества и затем провести их дифференцировку обратно в зрелые CTL[418][419][420][421]. Ещё большие возможности обещает метод, который сочетает две технологии — 1. получение ИПСК и превращение их в Т-клетки, и 2. последующую их генетическую модификацию, с помощью технологии конструирования химерных рецепторов антигенов (CAR)[422], позволяющую им распознавать раковые клетки-мишени по антигенам, в частности по CD19 — антигену, синтезируемому злокачественными В-клетками[423]. По аналогичной технологии можно было бы создать распознающие белок PBP2A Т-клетки направленные против устойчивых к антибиотикам бактерий таких как метициллин-резистентный золотистый стафилококк.

Большой клинический потенциал в качестве адъюванта для иммунотерапии рака имеют инвариантные естественные киллеры T (INKT) — клетки, которые могут служить в качестве моста между врожденной и приобретенной иммунной системами. Они повышают противоопухолевую активность организма, производя гамма-интерферон (ИФН-γ)[424]. Предложен концептуальный метод использования INKT клеток, полученных из ИПСК, для терапии рака, который состоит из четырёх ступеней: (1) выделение минимального количества INKT клеток, (2) перепрограммирования этих INKT клеток в ИПСК, (3) размножение этих ИПСК в культуре и дифференцировка их обратно в INKT клетки и (4) инъекция, полученных INKT клеток, подопытным животным для терапии рака[425].

Для терапии могут быть использованы также дендритные клетки, которые участвуют в контроле Т-клеточного ответа. После инъекции они могут выжить достаточно долго, чтобы стимулировать антиген-специфические CTL, после чего могут быть полностью устранены. Неисчерпаемым источником для терапии вакцинами могут служить антиген-представляющие дендритные клетки, полученные из человеческих ИПСК[426] или прямым перепрограммированием из фибробластов[427].

В-клетки способны к быстрой (за 2-3 дня) трансдифференцировке в макрофаги под воздействием транскрипционного фактора C / EBPα[en][428][429]. Кроме того эффективность перепрограммирования В-клеток в ИПСК с помощью транскрипционных факторов Oct4, Sox2, Klf4 и Myc под воздействием C / EBPα возрастает 100-кратно и охватывает порядка 95 % популяции клеток.[430] Интересно отметить, что с помощью C / EBPα можно преобразовать некоторые линии в-клеток лимфомы человека и лейкоза в макрофаг-подобные клетки уже не способные к дальнейшему онкогенезу.[431]

Омоложение эпителиальных клеток тимуса[править | править код]

Тимус является органом, размеры которого существенно сокращаются с возрастом. Это сокращение является одной из основных причин того, что иммунная система с возрастом становится менее эффективной. Одним из центральных звеньев механизма возрастной инволюции тимуса является снижение синтеза транскрипционного фактора FOXN1[en][432][433]. Клэр Блэкберн и её коллеги показали, что даже далеко зашедшая возрастная инволюция тимуса может быть обращена вспять путём принудительного усиления активности в эпителиальных клетках тимуса всего одного фактора транскрипции — FOXN1 с целью содействия омоложению, пролиферации и дифференцировки этих клеток в полностью функциональный эпителий[434]. Более того они показали, что принудительная экспрессия Foxn1 позволяет перепрограммировать клетки кожи — фибробласты в функциональные эпителиальные клетки тимуса. Эти FOXN1-индуцированные эпителиальные клетки тимуса (iTECs) поддерживали эффективное развитие in vitro линий клеток CD4+ и CD8+ тимуса. Но, что самое главное, после трансплантации в почку мыши, iTECs собирались и образовывали полностью организованный и функциональный тимус, который содержал все подтипы эпителиальных клеток тимуса, необходимых для поддержки дифференцировки Т-клеток, в результате чего иммунная система реципиента пополнялась новыми Т-клетками.[435] Это открытие можно считать первым примером выращивания органов из трансплантированных индуцированных стволовых клеток. В будущем этот метод может быть широко использован для повышения иммунной функции и борьбы с инфлеммеджингом у пациентов путём омоложения тимуса in situ[436].

Индуцированные стволовые/стромальные клетки мезенхимы (ИМСК)[править | править код]

Благодаря своим способностям вызывать иммуносупрессию и способности к дифференцировке во многие типы мезенхимальных тканей, стволовые/стромальные клетки мезенхимы (МСК) интенсивно исследуются на предмет их применения для лечения сердца, почек, нервной ткани, суставов и регенерации костей, а также терапии воспалительных заболеваний и подавления реакции отторжения при трансплантации[437]. МСК, как правило, получают путём болезненных, инвазивных процедур из взрослого костного мозга или жира, при этом выход очищенных МСК составляет всего лишь 0,001 % — 0,01 % от клеток костного мозга и 0,05 % от аспирата липосакции[438]. На практике удобнее всего получать МСК из аспирата липосакции, при этом удаляют взрослые адипоциты, которые успели потерять способность к пролиферации. Между тем взрослые адипоциты легко можно выделить и подвергнуть дедифференцировке в так называемые дедифференцированные жировые клетки (ДДЖК), которые возвращают способность к пролиферации и мультипотентность[439]. При соответствующих условиях культивирования in vitro или окружения in vivo ДДЖК могут дать начало адипогенным, остеогенным, хондрогенным или миогенным прогениторным клеткам, а также стимулировать неоваскуляризацию то есть проявляют те же свойства, что и МСК костного мозга[440][441][442][443]. У пожилых пациентов, которые больше всего нуждаются в восстановлении тканей путём аутологичной клеточной терапии, с возрастом наблюдается резкое возрастное снижение количества и качества МСК и адипоцитов[437][444][445][446][447]. Вместе с тем, известно, что ИПСК могут быть получены путём омоложения клеток даже от столетних людей[11]. Поэтому ИПСК, которые можно получить перепрограммированием клеток из тканей пациента и затем практически неограниченно размножать in vitro, может стать удобным источником омоложенных МСК.[448][449][450][451] Как показали опыты на мышах с моделью воспалительных заболеваний кишечника (англ.) таких как Болезнь Крона и Язвенный колит, молоденькие ИМСК могут быть успешно использованы для лечения даже лекарственно-рефрактерных форм подобных воспалительных заболеваний[452].

Chen с соавт. обнаружили, что воздействуя на ИПСК человека препаратом SB-431542[en] можно достаточно быстро получить однородную культуру клеток ИМСК, которые по свойствам мало чем отличаются от молодых МСК. По мнению авторов статьи такие ИМСК не обладают способностью к образованию тератом и имеют стабильный кариотип, а поэтому могут быть использованы для терапии[453][454] В настоящее время пока мало данных об эффективности и долгосрочной безопасности полученных этим методом ИМСК in vivo. Известно только что ИМСК могут быть использованы в клинике для лечении периодонтита[455][456] и разработки методов ортопедии[457]

Важную роль в инициировании и ускорении молекулярной программы, которая приводит к дифференциации ИМСК из ИПСК выполняет белок 2MSX2 (muscle segment homeobox 2). Генетическая делеция MSX2 ухудшает дифференцировку ИМСК из ИПСК. При использовании коктейля растворимых молекул эктопическая экспрессия MSX2 способствует образованию почти однородной популяции полностью функциональных ИМСК[458].

Разработан химический метод получения ИМСК из первичных фибробластов кожи человека с использованием шести химических ингибиторов (SP600125, SB202190, Go6983, Y-27632, PD0325901 и CHIR99021) с добавлением трёх факторов роста: трансформирующего фактора роста-β (TGF-β), основного фактора роста фибробластов (bFGF) и фактора подавления лейкемии (LIF). Этот химический коктейль преобразует человеческие фибробласты в ИМСК всего за 6 дней с эффективностью порядка 30-40 процентов[459].

Культуры мезенхимальных стволовых клеток человека могут быть использованы in vitro для массового производства экзосом, которые, как выяснилось, идеально подходят в качестве средства для доставки лекарств[460][461][462][463] и для доставки в клетку-мишень факторов транскрипции или микроРНК индуцирующих перепрограммирование (дедифференцировку, дифференцировку или трансдифференцировку).[464]

Индуцированные хондрогенные клетки (ИХОНК)[править | править код]

Хрящ соединительной ткани обеспечивает движение суставов без трения. Его дегенеративное перерождение в конечном счете, приводит к полной потере функции сустава на поздних стадиях остеоартрита. Единственным типом клеток в хряще являются хондроциты окруженные выделяемым ими внеклеточным матриксом. В настоящее время исследователи используют два способа восстановления хрящевой ткани:

· получением хондроцитов из плюрипотентных клеток (ЭСК/ИПСК)[465][466].

· получением хондроцитов прямым преобразованием фибробластов человека непосредственно в индуцированные хондрогенные клетки, минуя промежуточную стадию плюрипотентных клеток, с помощью трёх факторов репрограммирования (с-Мус, KLF4, и SOX9)[467].

Преимуществом первого метода является быстрое размножение культуры исходных клеток. Преимуществом второго — отсутствие в культуре плюрипотентных клеток, которые могли бы вызвать тератому. Клетки, полученные прямым перепрограммированием, синтезировали коллаген типа II. После имплантации в область поражения они смогли выжить и в течение не менее четырёх недель участвовали в образовании хрящевой ткани у мышей.

Источники соматических клеток[править | править код]

Наиболее часто для перепрограммирования используют получаемые биопсией фибробласты кожи[468][469] и клетки крови[470][471][472][473][474], однако удобнее получать соматические клетки из мочи[475][476][477][478]. Этот способ не требует биопсии или взятия образцов крови и поэтому безвреден для пациента. Стволовые клетки мочи имеют способность к мультипотентной дифференцировке. Они способны дифференцироваться в эндотелиальные, остеогенные, хондрогенные, адипогенные, скелетные миогенные и нейрогенные линии и вместе с тем не образуют тератомы.[479]. Поэтому их эпигенетическая память хорошо подходит для перепрограммирования в ИПСК. Вместе с тем, клеток в моче мало, эффективность их превращения в стволовые клетки низка, тогда как риск бактериального заражения выше, по сравнению с другими источниками клеток.

Ещё одним перспективным источником клеток для перепрограммирования являются мезенхимальные стволовые клетки, полученные из фолликулов человеческого волоса.[480] и кератиноциты[481]

Важно отметить, что происхождение соматических клеток используемых для перепрограммирования может оказывать влияние на эффективность перепрограммирования[482][483], функциональные свойства получаемых индуцированных стволовых клеток[484] и способность к образованию опухолей[485].

При выборе источника для перепрограммирования, во внимание следует принимать тот факт, что ИПСК сохраняют эпигенетическую память о тканях из которых они произошли, и что это влияет на их способность к направленной дифференцировке[420][484][486][487][488][489][490][491] Остаточная эпигенетическая память не обязательно проявляется на стадии плюрипотентности — ИПСК, полученные из разных тканей имеют надлежащую морфологию, в них активны гены характерные для плюрипотентности, и они способны дифференцироваться в ткани трёх эмбриональных слоев как in vitro, так и in vivo[492]. Однако, эта эпигенетическая память может проявиться позже, во время повторной дифференцировки в специфические типы клеток, которая требует активации локусов, сохранивших элементы остаточной эпигенетической памяти.[420][484][486][487][488][489]

Культуральная среда для плюрипотентных стволовых клеток свободная от питающих клеток и сыворотки[править | править код]

Для выращивания плюрипотентных стволовых клеток человека обычно используются так называемые питающие клетки (feeder cells) и сыворотка из эмбрионов быка (FBS). И то и другое является продуктами животного происхождения и может изменять свойства от партии к партии, что затрудняет стандартизацию условий. Кроме того выращивание стволовых клеток на клетках другого человека или животных создает риск загрязнения патогенными микроорганизмами, которые могут стать источником болезни для пациента после клеточной терапии.[493]. Поэтому компоненты животного происхождения требуют дорогостоящего контроля на качество, и их свободу от патогенов, полиаминоксидазы[en] и антигенов[494]. Для замены питающих клеток используются различные подложки, такие как: Matrigel, CELLstart, рекомбинантные белки и синтетические полимеры такие как Synthemax (см. обзор к статье[495] [496][497].

Известно, что важную роль в адгезии клеток друг к другу и к внеклеточному матриксу играет тримерный белок ламинин. Было найдено что ламинин-511, названный так за то, что он содержит α5 , β1 и γ1 цепи[498], если его нанести на дно чашки Петри способен поддерживать стабильную культуру ЭСК или ИПСК[499]. На основе этого открытия была разработана стандартная методика для длительного культивирования ЭСК и ИПСК человека в чашках покрытых rLN511E8 — рекомбинантным фрагментом ламинина −511 и с безсывороточной средой StemFit™[495]. Аналогичная методика но с использованием ламинина-521 и E-кадгерина позволила клонировать in vitro эмбриональные стволовые клетки без необходимости использовать ингибиторы ROCK (англ. Rho-associated protein kinase)[500]. Интересно было бы применить её и для ИПСК.

В стадии разработки находится также очень дешёвая подложка из углеродных нанотрубок. Она позволит выращивать и проводить дифференцировку стволовых клеток в промышленных масштабах. По заверениям авторов изобретения, изменяя условия изготовления этой подложки, можно так изменить её свойства, что она будет влиять на способность выращиваемых клеток к адгезии, на их пролиферацию и морфологию образуемых клеточных колоний.[501]

Для трёхмерного культивирования[en] широко используют гидрогели, такие как, например, гидрогель для получения кардиомиоцитов в одну стадию[502]

Способы доставки репрограммирующих факторов в ядро[править | править код]

Способы доставки можно подразделить на вирусные и невирусные, а также на те, что связаны с интеграцией векторов несущих репрограммирующие факторы в геном и действующие без интеграции[503][504].

(Значками отмечены свойства соответствующего вектора: (+)- Геномная интеграция происходит; (±)- интеграция происходит, но очень редко; (-)- вектор не интегрируется; (тр)- после интеграции векторная конструкция должна быть удалена транспозазой.)

Доставка вирусами[править | править код]

Чаще всего для доставки используются вирусные векторные системы. Вирусы используют свой врожденный механизм заражения клетки, что позволяет использовать их для доставки и внедрения кассеты генов необходимых для экспрессии репрограммирующих факторов В качестве вирусов для доставки генов обычно используют:

· Ретровирусы(+). Они в качестве генома содержат одноцепочечную молекулу РНК. С помощью обратной транскрипции на РНК вируса синтезируется линейная двухцепочечная ДНК которая затем интегрируется в двухцепочечную ДНК генома клетки-хозяина. Описан метод эффективного перепрограммирования клеток человека в ИПСК с помощью одного вектора содержащего четыре ТФ, в сочетании с коктейлем, содержащим три небольшие молекулы[505]. Приведены прописи аналогичных методов[506].

· Лентивирусы(+). Они являются подклассом ретровирусов. В отличие от ретровирусных векторов, лентивирусные векторы могут заражать не только делящиеся клетки, но и находящиеся в покое терминально дифференцированные клетки[507][508][509]. Удаляемая полицистронная кассета STEMCCA представляющая собой вырезаемый Cre-рекомбиназой[en] перепрограммирующий лентивирусный вектор позволяет осуществлять свободное от трансгенов перепрограммирование взрослых фибробластов кожи человека в ИПСК[510].

· Вирус Сендай (-) — вирус из семейства Paramyxoviridae, содержащий одноцепочечную РНК[511][512]. Вирус Сендай считается безопасным, потому что его генетический материал не включается в ДНК клетки, и от него достаточно легко избавиться инкубацией культуры клеток при повышенной температуре. Вирус от тепла погибает, тогда как трансформируемым клеткам такая обработка не вредит[513]. Для получения ИПСК этим методом можно воспользоваться готовыми наборами[514]. В отличие от ретровирусных и эписомных векторов, при перепрограммировании с использованием вируса Сендай пока не наблюдалось дефектных клонов, не способных к дифференцировке[515]. Описание метода см[516].

· Венесуэльский вирус лошадиного энцефалита (VEE) (-) у которого структурные белки удалены, но все ещё присутствуют неструктурные белки,[3] позволяет с помощью самореплицирующегося полицистронного репликона РНК внести в клетку однократной трансфекцией четыре перепрограммирующих фактора (OCT4, KLF4, SOX2 и либо c-MYC либо GLIS1) .

· Не интегрирующиеся аденовирусы (±)[517]. По мнению некоторых авторов, векторную кассету, после того как перепрограммирование достигнуто, можно удалить с помощью трансфекции мРНК Cre рекомбиназы[518], что якобы позволяет сочетать высокую эффективность вирусной



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.