Хелпикс

Главная

Контакты

Случайная статья





Содержание 4 страница



Перепрограммирование с помощью протеогликана[править | править код]

Альтернативной стратегией превращения соматических клеток в плюрипотентные состояния может быть непрерывная стимуляция фибробластов одним из протеогликанов ECM, а именно фибромодулином[297]. Такие клетки проявляют способность к регенерации скелетных мышц с заметно меньшим онкогенным риском по сравнению с ИПСК[298]. Пониженная онкогенность таких клеток связана с активацией CDKN2B (ингибитора циклин-зависимой киназы 2B) во время процесса перепрограммирования рекомбинантным человеческим фибромодулином[299].

Индуцированные стрессом стволовые клетки (ИССК)[править | править код]

Клетки STAP (Stimulus-triggered acquisition of pluripotency)[править | править код]

В 2014 году группа японских исследователей опубликовала в статью в журнале Nature[300], где было заявлено открытие нового способа быстрого перепрограммирования соматических клеток млекопитающих в плюрипотентные клетки — так называемые клетки STAP[en] в ответ на действие сильных внешних раздражителей, таких как временное повышение кислотности окружающей среды. Однако другим исследователям не удалось воспроизвести эти результаты. Впоследствии материал о клетках STAP был отозван журналом Nature как ошибочный[301], один из соавторов работы покончил жизнь самоубийством[302], а сами работы по этому направлению были прекращены[303].

 

Перепрограммирование индуцированное физическим воздействием[править | править код]

Плюрипотентные клетки содержат E-кадгерин, который при дифференцировке заменяется на N-кадгерин. Уникальной особенностью Е-кадгерина, помимо того, что он ответственен за межклеточную адгезию, является способность регулировать сигнальные пути клетки и заменять фактор Oct4 при индукции плюрипотентности[304]. Фибробласты в которых подавлен синтез E-кадгерина не могут перепрограммироваться. Во время перепрограммирования, N-кадгерин может заменять функции E-кадгерина, что предположительно указывает на необходимость адгезии для перепрограммирования[305]. Однако, согласно Гуаньнань Су с соавт., формирование в культуре клеток 3D сфер, в связи с вынужденным ростом клеток на поверхности с низкой связывающей способностью, иногда приводит к репрограммированию клеток. В качестве примера они показали, что нервные клетки-предшественники могут быть получены непосредственно из фибробластов путём физического воздействия, без введения экзогенных перепрограммирующих факторов.[306] Ранее подобные сферы были получены в опытах с фибробластами мыши с мутацией инактивирующей ген-супрессор опухолей ретинобластомы — RB1[307], белка без которого клетки теряют способность к старым контактам и контактному ингибированию пролиферации в результате чего выходят за пределы колонии и образуют сферы где доминируют новые межклеточные контакты, по всей видимости, и вызывающие самопроизвольное перепрограммирование в тератомоподобные стволовые клетки[308].

Физические сигналы, в виде параллельных микродорожек на поверхности подложки для культивации клеток, могут заменить действие низкомолекулярных эпигенетических модификаторов и значительно повысить эффективность перепрограммирования. Механизм основан на механомодуляции изменяющей морфологию и эпигенетическое состояние клеток. В частности, по мнению авторов исследования: «снижение активности гистоновой дезацетилазы и повышение экспрессии WD повторяющего домена 5 (WDR5)-субъединицы H3 метилтрансферазы вызванное поверхностью с микродорожками приводит к увеличению ацетилирования и метилирования гистона Н3». Аналогичное действие на клетки оказывали нановолоконные подложки с выровненной ориентацией волокон[309].

Схема агрегации клеток

Важным биофизическим фактором влияющим на дифференцировку клеток является жесткость подложки. Например, мягкие субстраты способствуют образованию из ЭСК, по BMP4[en]-зависимому пути, нейроэпителиальных клеток, в то же время предотвращают дифференцировку в клетки нервного гребня. Исследования показали, что в этом механизме задействованы механочувствительное Smad фосфорилирование и ядерно-цитоплазматические перемещения, зависящие от регулируемой жесткостью подложки активности Hippo[en]/YAP1[en] и сократительной способности комплекса актомиозин-цитоскелет[310].

Помогает клетке преобразовывать механические раздражители в электрические и биохимические сигналы белок регулирующий открытие ионного канала Са++ названный Пьезо1 (Piezo1), который активируется натяжением мембраны. В зависимости от липидного состава мембран придающего ей жесткость или мягкость меняется и способность Пьезо реагировать на механические стимулы[311]

Механизмы механомодуляции см. в обзорах:[312][313][314]

Разработан метод, который превращает соматические клетки в стволовые клетки «сжимая» их с помощью 3D микроокружения состоящего из специально подобранного геля, что открывает путь для крупномасштабного производства стволовых клеток для медицинских целей[315][316].

Как отмечено выше, в процессе перепрограммирования клетки морфологически изменяются, что приводит к изменению их способности к адгезии. Эти характерные различия в адгезии позволили разработать процесс выделения плюрипотентных стволовых клеток с помощью микрожидкостныхустройств[317]. Преимуществом этого метода является то что: разделение занимает менее 10 минут, при этом удается получить более чем на 95 % чистую культуру ИПСК клеток, причем выживаемость клеток больше 80 % и полученные клетки сохраняют нормальные транскрипционный профиль, потенциал дифференцировки и кариотип.

Индуцированные нервные стволовые клетки (иНСК)[править | править код]

Центральная нервная система млекопитающих имеет крайне ограниченные возможности для регенерации. Поэтому для лечения многих нервных расстройств (таких как: инсульт, болезнь Паркинсона, болезнь Альцгеймера, боковой амиотрофический склероз и т. д.) требуются нервные стволовые клетки, автологичным источником которых могут стать иНСК пациента. В ряде новейших публикаций описано прямое преобразование соматических клеток в индуцированные нервные стволовые клетки[235][237][236][318].

Так, например, предшественники нервных клеток можно получить прямым преобразованием и без введения экзогенных транскрипционных факторов, пользуясь только химическим коктейлем[319]. Эти клетки, называемые ciNPCs (chemical-induced neural progenitor cells) можно к примеру получить из фибробластов кончика хвоста мыши или мочевыводящих соматических клеток человека, используя для этого коктейль состоящий из:

1. ингибитора HDAC (в качестве такового можно использовать либо вальпроевую кислоту), либо бутират натрия, либо трихостатин А;

2. ингибитора GSK-3[en] (в качестве такового можно использовать либо CHIR99021, либо карбонат или хлорид лития);

3. ингибитора сигнальных путей TGF бета (либо RepSox, либо SB-431542[en], либо Tranilast[en]) и поместив клетки в условия гипоксии[320].

Аналогичным образом без введения экзогенных транскрипционных факторов, пользуясь только химическим коктейлем можно получить Шванновские клетки[321]. По некоторым данным, в принципе, возможно, преобразовать трансплантированные в мозг мыши фибробласты и астроциты человека, спроектированные методами генной инженерии на выработку факторов (Ascl11, Brn2a и Myt1l) индуцирующих их перепрограммирование в нейроны, активируя после трансплантации соответствующие гены с помощью активатора добавленного к питьевой воде животных.[322] Было также показано, что in situ эндогенные астроциты мыши могут быть напрямую преобразованы в функциональные нейроны[322], способные участвовать в формировании нейросетей[323]. Важно отметить, что в отличие от ИПСК, полученные таким образом клетки не пролиферируют, а значит более безопасны. Наблюдения за подвергшимися этой процедуре мышами в течение года, не выявили у них признаков образования опухоли. Те же исследователи превратили астроциты спинного мозга в прогениторные клетки, называемые нейробластами, которые способны дифференцироваться в нейроны при поврежденнии спинного мозга[324]. В то время как нейроны взрослого человека обычно не в состоянии регенерировать после травмы спинного мозга, нейроны, полученные из человеческих ИПСК, после трансплантации крысам с травмами спинного мозга продемонстрировали значительный рост по всей длине центральной нервной системы животных. Важно отметить, что в эксперименте были использованы ИПСК полученные из клеток кожи, взятых от 86-летнего мужчины. Авторы исследования продемонстрировали, что полученные из ИПСК омоложенные нейроны способны прожить в костном мозге крысы не менее трёх месяцев и в течение этого срока не образовывали опухолей. К сожалению, такая клеточная терапия не привела к излечению крысы от паралича.[325]

Inoue и его коллеги трансплантировали глиальные нервные клетки-предшественники, полученные из человеческих иПСК в поясничный отдел спинного мозга мышей с моделью бокового амиотрофического склероза (БАС). Трансплантированные клетки дифференцировались в астроциты и продлевали жизнь мышей с БАС. Очевидно ИПСК могут стать перспективным ресурсом для трансплантационной терапии БАС.[326]

Разработана технология для прямого преобразование фибробластов в функциональные астроциты с помощью транскрипционных факторов NFIA (Nuclear factor 1 A), NFIB (Nuclear factor 1 B) и SOX9[327]

Как показано в обзоре Бельмонто с соавт. способы прямого преобразования соматических клеток в индуцированные нервные стволовые клетки отличаются по своим методическим подходам[328]. Какой из этих подходов окажется наиболее приемлемым для клиники покажут исследования.

Прогениторные клетки олигодендроцитов (ПКОД)[править | править код]

Без миелиновой оболочки, выполняющей роль изоляции волокон нейронной сети, сигналы посланные по нервам быстро затухают. Поэтому при заболеваниях, связанных с потерей миелиновой оболочки, таких как рассеянный склероз, наблюдается снижение интеллекта, парез, атаксия туловища и конечностей, нарушения зрения, потеря чувствительности и ряд других неврологических симптомов. Перспективным подходом к лечению подобных заболеваний является трансплантация клеток-предшественников олигодендроцитов (ПКОД), способных заново создать миелиновую оболочку вокруг пораженных нервных клеток. Для такой терапии необходимо иметь доступный источник этих клеток. Основу для решения этой проблемы заложил метод прямого преобразования фибробластов мышей и крыс в олигодендроглиальные стволовые клетки индуцированного путём принудительной гиперэкспрессии восьми[329] или всего трёх транскрипционных факторов Sox10, Olig2 и Zfp536.[330] Показано, что аутологичная клеточная терапия с использованием полученных in vitro из ИПСК пациента клеток-предшественниц олигодендроцитов приводит к миелинизации in vivo, что свидетельствует о функциональности этих человеческих клеток в организме мыши и об открывшейся перспективе их использования в клинике.[331]

Индуцированные кардиомиоциты (иКМ)[править | править код]

Одной из наиболее актуальных задач клинической науки нынешнего столетия является развитие терапевтических стратегий, способных обратить вспять прогрессирование сердечной недостаточности — основной причины инвалидности и смертности населения. Большие надежды в этом плане возлагаются на методы клеточной терапии, которые могли бы предотвратить образование соединительной рубцовой ткани вместо мышечной. Простейшим подходом к решению этой задачи могло бы быть перепрограммирование сердечных фибробластов непосредственно в организме путём доставки в сердце факторов транскрипции[232] или микроРНК[17][332]. Была предпринята попытка перепрограммировать сердечные фибробласты в кардиомиоцит-подобные клетки in vivo путём гиперэкспрессии в них факторов транскрипции Gata4, Mef2c и Tbx5 (GMT)[232]. В случае удачи, такой поход позволил бы превращать рубцовую ткань в мышечную непосредственно в сердце, без необходимости клеточной трансплантации. Эффективность такого перепрограммирования оказалась очень низкой, а фенотип полученных кардиомиоцитов существенно отличался от фенотипа нормальных зрелых кардиомиоцитов. Результатом чего явилась низкая выживаемость перепрограммированных клеток[333]. Позднее в опытах in vitro фенотип удалось несколько исправить (добавлением ESRRG, MESP1, Myocardin, ZFPM2 и TGF-β), но эффективность перепрограммирования осталась низкой[334]. Поднять эффективность перепрограммирования in vivo позволяют неинтегрирующиеся векторы вируса Сендай, с вектором факторов перепрограммирования Gata4, Mef2c, и Tbx5[335]

Определённые успехи наметились в методах получения и выращивания большого количества кардиомиоцитов in vitro[336][337][338]. Так, например, удалось с высокой степенью эффективности получить из ИПСК человека прогениторные сердечные клетки способные, при трансплантации их в сердечную мышцу, снизить её перерождение в рубцовую ткань после инфаркта[339]. С помощью малых молекул и путём активации синтеза β-катенина или же ингибирования синтеза Wnt в ИПСК человека in vitro, удалось повысить эффективность получения кардиомиоцитов до 80 %[340].

Возможно, что в будущем удастся заменить искусственные электрокардиостимуляторы, необходимые людям с медленным или нерегулярным сердцебиением, на биологический кардиостимулятор (пейсмекер) из индуцированных стволовых клеток. Надежду на это вселяют эксперименты в которых поросятам делали инъекцию индуцированных сердечных клеток, способных синхронизировать ритм сердцебиения[341]. Более того, при ишемической кардиомиопатии, вызванной смоделированным на мышах инфарктом миокарда, трансплантация ИПСК способствовала синхронизации поврежденных желудочков сердца, улучшая их проводимость и сократимость за счет активации процессов восстановления[342]. Перепрограммированием соматических клеток in vivo с помощью эмбрионального фактора транскрипции T-box 18 (TBX18)[en] можно преобразовать кардиомиоциты в клетки пейсмекера. Это открытие открывает возможность легко и быстро вылечить пациентов зависящих от кардиостимулятора. Перенос гена TBX18 In situ с помощью инъекции его аденовирусного носителя позволяет создать в месте инъекции естественный источник биологического водителя ритма уже через 2-3 дня после введения. При этом пока не наблюдалось возникновения опухолей или каких-либо нарушений в деятельности сердца. Таким образом, минимально инвазивный перенос генов TBX18 может рассматриваться как перспективный метод лечения больных с блокадой сердца, который в будущем, очевидно, заменит лечение искусственными кардиостимуляторами.[343]

Создан коктейль для прямой (без прохождения через плюрипотентное состояние) трансдифференцировки, состоящий из четырёх низкомолекулярных компонентов (SB431542 (ингибитора ALK4/5/7), CHIR99021 (ингибитора GSK3), парната (ингибитора LSD1/KDM1, называемого также транилципромином), и форсколина (активатора аденилатциклазы)). Этот коктейль позволил с высокой эффективностью превратить фибробласты мыши в клетки сердечной мышцы с помощью всего одного фактора транскрипции — Oct4. Полученные таким способом индуцированные кардиомиоциты спонтанно сокращались[344]. Методом прямой трансдифференциации без использования генетических векторов, то есть чисто фармакологически, с помощью коктейля из девяти компонентов, удалось получить с выходом 97 % из фибробластов кожи бьющиеся химически индуцированные кардиомиоцит-подобные клетки (ciCMs), которые почти не отличались от человеческих кардиомиоцитов по данным исследования их транскриптома, эпигенетически и по электрофизиологическим параметрам. Более того, при трансплантации в сердце мыши с инфарктом, обработанные этим коктейлем фибробласты превращались в выглядевшие здоровыми клетки сердечной мышцы[345][346]. Предпринята успешная попытка противостоять постинфарктному фиброзу (перерождению сердечной мышцы в соединительную ткань с образованием рубца) с помощью химического перепрограммирования in vivo сердечных фибробластов в кардиомиоциты.[347]

Лу с соавторами[348] создали биоинженерную конструкцию сердца путём заселения очищенного от клеток (децеллюларизованного) сердца мыши мультипотентными сердечно-сосудистыми прогениторными клетками, полученными из ИПСК человека. Они обнаружили, что мультипотентные сердечно-сосудистые прогениторные клетки направленно мигрируют в соответствии с архитектурой сердца, а прибыв на место, размножаются и дифференцируются в кардиомиоциты, клетки гладких мышц и эндотелиальные клетки, как это необходимо для восстановления утраченной структуры сердца. Очевидно, что внеклеточный матрикс сердца мыши (оставшаяся после удаления клеток мыши подложка сердца) может посылать сигналы мультипотентным сердечно-сосудистым прогениторным клеткам человека, необходимые для их навигации и превращения в специализированные клетки, обеспечивающие нормальную работу сердца. Через 20 дней после перфузии сердца средой содержащей факторы роста, оно, после электростимуляции, начинало биться с темпом 40-50 ударов в минуту и реагировало на медикаменты.[349]

Созревание кардиомиоцитов in vivo[править | править код]

Кардиомиоциты получаемые из ИПСК отличаются от взрослых соматических клеток и остаются незрелыми при культивировании в чашках Петри. Японским ученым удалось добиться созревания этих клеток. Для этого они на месяц поместили незрелылые клетки кардиомиоцитов в сердце новорожденной мыши для дозревания[350].

Омоложение мышечных стволовых клеток[править | править код]

Пожилые люди нередко страдают от прогрессирующей дистрофии и слабости мышц, что отчасти связано с повышенной активностью сигнальных путей p38α и p38β митоген-активированных протеин киназ в стареющих мышечных стволовых клетках. Подвергнув такие стволовые клетки непродолжительному воздействию SB202190 — ингибитора p38α и p38β — в сочетании с культивированием на мягкой подложке из гидрогеля, можно быстро омолодить их и размножить. Более того, после имплантации в организм такие омоложенные клетки способны повысить силу старых мышц[351]. Восстановить способность сателлитных стволовых клеток к регенерации можно и подавив синтез на гене p16INK4a[en] (называемом также Cdkn2a)[352].

Миогенные предшественники, которые могут быть использованы для моделирования болезней или клеточной терапии скелетных мышц, могут быть также получены непосредственно из ИПСК с помощью свободно-плавающей шаровой культуры (EZ сфер) в культуральной среде, содержащей высокие концентрации (100 нг / мл) фактора роста фибробластов-2 (FGF-2) и эпидермального фактора роста.[353]

Внешние изображения

Так выглядят фибробласты меченые зеленым флуоресценцентным красителем

Индуцированные гепатоциты[править | править код]

Получение клеток печени из ИПСК[править | править код]

Гепатоциты человека имеют очень ограниченную способность к восстановлению после повреждений печени. Поэтому трансплантация печени нередко является единственным способом лечения таких болезней как цирроз. Клеточная терапия печени затрудняется тем, что культура гепатоцитов плохо размножается in vitro.[354] Поэтому удобнее размножить клетки в виде ИПСК, и только затем превратить их в гепатоциты.[355] Разработано несколько способов получения гепатоцитов из ИПСК[356][357][358][359][360][361][362][363][364] Так, например для очистки и размножения самообновляющихся гепатобласт-подобных клеток из человеческих плюрипотентных стволовых клеток (ЭСК/ИПСК), их культивировали на чашках покрытых человеческим ламинином-111 в течение более 3 месяцев, после чего они подобно овальным клеткам печени были способны дифференцироваться в гепатоцит-подобные клетки, а также в клетки желчных путей — холангиоцит-подобные клетки. Было показано, что такие гепатобласт-подобные клетки могут интегрироваться в паренхиму печени мыши. Предполагается, что, благодаря подавлению неблагоприятных генных регуляторных сетей при культивировании на поверхности покрытой ламинином, гепатоциты имеют большое сходстве с взрослыми гепатоцитами и могут быть использованы для скрининга лекарственных средств, а также в качестве источника клеток для регенеративной терапии печени[365][366].

В 2010 году была продемонстрирована возможность индуцировать полученные из жировой ткани стромальные клетки (ASC) в клетки похожие по ряду функций на гепатоциты человека, способные прижиться в поврежденной токсинами печени мыши[367][368]. Позднее был разработан быстрый (до десяти дней) и эффективный (с выходом более 50 процентов) способ превращать клетки полученные путём липосакции в клетки печени. Клетки, полученные из собственных клеток человека с помощью этой новой методики, превращаются в клетки печени без промежуточной фазы плюрипотентных клеток и, очевидно, не образуют опухоли. В печени они формируют многоклеточные структуры необходимые для образование желчных протоков. Особенностью этой методики является культивирование адипоцитов в жидкой суспензии, в которой они образуют сфероиды[369]

Обнаруженная у совместной культуры гепатоцитов, полученных из ИПСК, с эндотелиальными (для образования сосудов) и мезенхимальными (для образования поддерживающего внеклеточного матрикса[370][371]) клетками, способность к самоорганизации (самосборке) в трёхмерные шарообразные структуры, представляющие собой зачаток печени[372] позволяет надеяться, что в будущем трансплантологам: не надо будет искать и ждать донора, больному будут пересаживать зачаток нужного органа, полученный из его же собственных клеток, и этот зачаток будет уже на месте дорастать до нужных размеров.[373] Эта методика позволяет использовать клетки всего одной мыши для предварительной проверки 1.000 лекарственных препаратов на их пригодность для лечения болезней печени, что открывает новые возможности для медицинских исследований и проверки безопасности лекарств[374].

Методы получения гепатоцитов без использования ИПСК[править | править код]

Для получения гепатоцитов из человеческих фибробластов не обязательно вначале получить ИПСК. Используя небольшие молекулы можно добиться прямого перехода фибробластов в индуцированные мультипотентные прогениторные клетки (iMPC) из которых затем образуются сначала прогениторные клетки эндодермы, а затем гепатоциты. После трансплантации мышкам с иммунодефицитом и смоделированным поражением печени, клетки iMPC интенсивно размножаются и приобретают функциональные способности характерные для взрослых гепатоцитов. Важно отметить, что при этом не наблюдалось образование опухолей, потому что клетки не проходили через стадию плюрипотентного состояния[375]. С помощью инфицирования лентивирусами, вызывающими экспрессию генов FOXA3[en], HNF1A[en] и HNF4A, удалось осуществить прямое преобразование фибробластов человека во взрослые гепатоцито-подобные клетки, которые могут быть размножены в культуре, а затем использованы для лечения острой печеночной недостаточности и метаболической болезни печени.[376].

Инактивация сигнального пути Hippo in vivo с высокой эффективностью приводит к дедифференцировке взрослых гепатоцитов в клетки, несущие характеристики прогениторных клеток. Эти клетки-предшественники продемонстрировали способность к самообновлению и смогли прижиться в печени. Эти данные продемонстрировали беспрецедентный уровень фенотипической пластичности зрелых гепатоцитов[377]

Коктейль из малых молекул, Y-27632, A-83-01 и CHIR99021, может превратить зрелые гепатоциты крысы и мыши in vitro в пролиферативные бипотентные клетки — CLiPs (chemically induced liver progenitors — химически индуцированные клетки-предшественники печени). CLIPS могут дифференцироваться как в зрелые гепатоциты, так и в эпителиальные клетки желчных протоков, которые могут образовывать функциональные структуры протоков. При длительном культивировании CLIPS не теряют свою пролиферативную активность и способность дифференциации в клетки печени, и могут заселять хронически пораженные ткани печени[378].

Подробнее см. обзор:[379]

Крипта кишечника. На дне крипт располагаются недифференцированные бескаёмчатые энтероциты являющиеся наиболее подходящим и доступным источником для перепрограммирования в инсулин-продуцирующие клетки

.

Клетки продуцирующие инсулин[править | править код]

Осложнения сахарного диабета, такие как сердечно-сосудистые заболевания, ретинопатия, невропатия, нефропатия и заболевания периферического кровообращения обусловлены дисрегуляцией сахара в крови из-за недостаточной продукции инсулина панкреатическими бета-клетками и при отсутствии адекватного лечения могут привести к летальному исходу. Одним из перспективных подходов к лечению диабета является трансплантация β-клеток[en], источником которых могли бы стать плюрипотентные стволовые клетки, (в том числе ЭСК и ИПСК)[380][381]. Однако β-клетки, получаемые из плюрипотентных стволовых клеток, имеют фенотип характерный для функционально незрелых β-клеток эмбрионального типа и отличаются от взрослых β-клеток повышенным уровнем базальной секреции глюкозы и отсутствием способности реагировать на сигналы стимуляции её синтеза (что подтверждают и результаты секвенирования РНК транскриптов).[382]

Избыточная экспрессия комбинации трёх транскрипционных факторов (PDX1[en], NGN3 и MAFA[en]) называемой PNM, способна привести к трансформации некоторых видов клеток в состояние подобное β-клеткам.[383] Оказалось, что наиболее подходящим и доступным источником для перепрограммирования в инсулин-продуцирующие клетки, является эпителий кишечника. Под действием PNM трёхмерная культура зачатков органа (так называемые органоиды) стимулирует превращение эпителиальных клеток кишечника в β-подобные клетки, которые можно использовать для трансплантации[384].

Биоинженерия клеток кровеносных сосудов[править | править код]

Кровеносные сосуды образуют обширные сети, которые в течение всей жизни обеспечивают клетки организма питательными веществами и кислородом. Когда кровеносные сосуды становятся старше, их структура и функции, нередко, отклоняются от нормы, способствуя тем самым многочисленным возрастным заболеваниям, таким как: инфаркт миокарда, ишемический инсульт и атеросклероз артерий, питающих сердце, мозг и нижние конечности. Поэтому, важной задачей является стимулирование роста сосудов для обеспечения циркуляции, чтобы предотвратить обострение этих заболеваний. Одним из способов стимулирования роста сосудов является имплантация индуцированных прогениторных клеток эндотелия (иПЭк).[284] Так, например, с помощью иПЭк, полученных путём частичного репрограммирования клеток эндотелия, удалось добиться увеличения коронарного кровотока и по данным эхокардиографии улучшить функционирование сердца[385]. Стволовые клетки, извлеченные из жировой ткани после липосакции можно превратить в прогениторные гладкие мышечные клетки (иПГМк), участвующие в формировании артерий и вен. Это клетки могут быть использованы для создания кровеносных сосудов, необходимых для замены неисправных артерий сердца[386]. Так, например, обнаружено, что с помощью культуры ИПСК человека в сочетании с селекцией с помощью трёх маркеров: CD34 (поверхностного гликофосфопротеина ранних эмбриональных фибробластов), NP1 (рецептора — нейрофилин1) и KDR (киназы содержащей домен рецептора), удалось получить эндотелиальные клетки, которые после трансплантации мышам образовали in vivo стабильные функциональные кровеносные сосуды, работавшие на протяжении по меньшей мере 280 дней.[387].

При лечении инфаркта миокарда важно предотвратить образование фиброзных тканей шрама и стимулировать регенерацию. Достичь этого in vivo можно применив паракринные факторы способные изменить направление дифференцировки сердечных стволовых клеток предшественников от специализации в фиброзную рубцовую ткань в сторону образования сердечно-сосудистой ткани. Например, на мышиной модели инфаркта миокарда, было показано, что однократная интрамиокардиальная инъекция мРНК фактора роста эндотелия сосудов (VEGF-A modRNA), синтетически модифицированной так чтобы предотвратить её деградацию организмом, приводит к длительному улучшению функции сердца, обусловленному перенаправлением дифференцировки эпикардиальных клеток-предшественников в сердечно-сосудистый тип клеток[388].

Мервин Иодер с соавт., описали метод для преобразования ИПСК человека в клетки, подобные эндотелиальным колониеобразующим клеткам пуповинной крови (CB-ECFCs). Полученные ими CB-ECFC-подобные клетки имели стабильный эндотелиальный фенотип, высокий пролиферативный потенциал и способность, при трансплантации мышкам, образовывать человеческие кровеносные сосуды, а также участвовать в регенерации сетчатки и конечностей мыши после ишемии. Важно отметить, что индуцированные CB-ECFC-подобные клетки практически не образуют тератомы[389].

Прямое перепрограммирование клеток взрослого организма в прогениторные нефроны (ИПН)[править | править код]

Взрослые клетки проксимальных канальцев почки могут быть непосредственно перепрограммированы в прогениторные нефроны эмбриональной почки, с использованием пула из шести генов кодирующих «инструктирующие» факторы транскрипции (SIX1, SIX2, OSR1, Eyes absent homolog 1(EYA1), Homeobox A11 (HOXA11) и Snail homolog 2 (SNAI2)).[390] Возможность получения таких клеток позволит в будущем приступить к разработке методов клеточной терапии почечных заболеваний. Первые успехи на этом пути уже есть. Так, недавно было показано, что эмбриональные органоиды почки, сформированные путём самоорганизации из клеточной суспензии, после трансплантации их во взрослую почку крысы могут в ней прижиться.[391]

Биоинженерия стволовых клеток крови[править | править код]

Одной из самых востребованных целей регенеративной медицины является возможность получения в неограниченном количестве гемопоэтических стволовых клеток, пригодных для трансплантации, из более зрелых или дифференцированных клеток крови, для того чтобы покрыть дефицит трансплантатов костного мозга. Чтобы запустить в фибробластах процессы гемопоэза в условиях in vitro достаточно всего четырёх транскрипционных факторов: Gata2, Gfi1b, cFos, и Etv6 . Их воздействие приводит к образованию клеток подобных эндотелиальным — прогениторным клеткам с последующим возникновением из них кроветворных клеток[392]. Аналогичным образом, используя 6 транскрипционных факторов: Run1t1, Hlf, Lmo2, Prdm5, Pbx1, и Zfp37, а также ещё два фактора Mycn и Meis1 для повышения эффективности перепрограммирования, удалось получить гемопоэтические стволовые клетки из зрелых дифференцированных клеток крови[393].

См. также обзоры:[394][395]

Эритроциты[править | править код]

Переливание эритроцитов необходимо для многих пациентов с травмами или гематологическими заболеваниями. Однако, на сегодняшний день, поставка эритроцитов зависит от добровольных доноров число которых недостаточно. Кроме того, переливание крови от доноров сопряжено с определённым риском из-за возможности передачи ряда инфекций. Решить эту проблему могло бы производство необходимых количеств эритроцитов вне организма[396][397]. В принципе уже доказано, что эритроциты, полученные вне организма из мобилизованных CD34-позитивных клеток (CD это на англ. сокращенно кластер дифференцировки), способны выжить при переливании аутологичному реципиенту[398]. Эритроциты, получаемые in vitro, как правило, содержат исключительно зародышевый гемоглобин (HbF), который непригоден для нормального функционирования эритроцитов во взрослом организме.[399] Тем не менее, in vivo, после трансфузии полученных из ИПСК эритроидных прогениторных клеток содержащих ядро, наблюдалось переключение на синтез взрослой изоформы гемоглобина[400]. Однако в этом случае возникает другая проблема: несмотря на то, что эритроциты не имеют ядер, и, следовательно, не могут образовывать опухоли, их непосредственные предшественники эритроидные прогениторные клетки ядром обладают и следовательно потенциально опасны. Созревание эритробластов в функционально зрелые эритроциты требует сложного процесса реорганизации, который заканчивается удалением ядра с образованием безъядерных эритроцитов[401]. Увы, методы перепрограммирования клеток в настоящее время часто приводят к нарушению этих процессов энуклеации и поэтому использование эритроцитов или их непосредственных предшественников эритробластов для переливания ещё недостаточно защищено от возможности образования опухолей. Тем не менее Bouhassira и его коллеги обнаружили, что кратковременное воздействие цитокинов, благоприятствующих дифференцировке стволовых клеток в эритроидные, на CD34 позитивные клетки, до их размножения с последующей пролиферацией полученных предшественников, позволяет получать на порядок больший выход эритроидных клеток, чем наблюдалось ранее. И что самое главное: эти красные кровяные клетки имели те же изоформы глобина что и использованные в качестве источника CD34 позитивные клетки[402][403]. Значительно повысить выход эритроидных клеток из ИПСК или же эритроцитов из человеческих гемопоэтических стволовых клеток позволяет подавление гена SH2B3 или его инактивация генным редактированием с помощью CRISPR/Cas9[404]

Интересно также отметить, что важную роль в развитии нормальных клеток крови играет сигнальный путь рецептора арил-углеводородов (AhR) (который как было установлено, содействует и образованию раковых клеток[405]). Активация AhR в человеческих гемопоэтических клетках-предшественницах (HPS) приводит к беспрецедентной пролиферации HPS, мегакариоцитов и клеток эритроидных линий.[406].

Подробный обзор методов получения эритроцитов см. в[407][408][409][410]

Тромбоциты[править | править код]

Тромбоциты играют важную роль в предотвращении кровоизлияния у больных с тромбоцитопенией или с тромбоцитемией. Серьезной проблемой для пациентов после повторных переливаний тромбоцитов является развитие иммунных реакций. Поэтому для клиники большое значение имеет возможность получения тромбоцитов, не содержащих HLA-антигены, вне организма и на средах, не содержащих сыворотки. Некоторых успехов в этом направлении добились Figueiredo с соавторами. Используя РНК-интерференцию для подавления синтеза β2-микроглобулина в CD34-положительных клетках, они сумели получить тромбоциты, в которых на 85 % было снижено содержание антигенов HLA[411]. Позднее удалось получить неиммуногенные по HLA класса I тромбоциты, которые кроме того не активируют NK-клетки[412]

Разработан метод получения тромбоцитов, который заключается в создании из ИПСК человека устойчивых иммортализованных линий клеток-предшественников мегакариоцитов (imMKCLs) путём доксициклин-зависимой гиперэкспрессии Bmi1 и BCL-XL[en]. Полученные imMKCLs можно размножать и культивировать в течение длительного периода (4—5 месяцев), причем даже после криоконсервации. Прекращение сверхэкспрессии c-MYC, Bmi1 и Bcl-X L (путём удаления доксициклина из среды) заставляло эти клетки производить тромбоциты CD42b+, которые по большинству параметров не отличались от тромбоцитов крови[413].

Альтернативный подход получения мегакариоцитов, с высоким выходом (3 единицы (2.4 × 1011 тромбоцитов на единицу) тромбоцитов для переливания с одного миллиона клеток ИПСК) и с чистотой более 90 %, позвол<



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.