|
|||
Задача №12. Задача №13Задача №12 12 задача из демоверсии ЕГЭ по математике базового уровня посвящена теме “экстремум”. Здесь необходимо найти производную функции и ее критические точки. Пример задачи Турист подбирает себе экскурсионную программу. Сведения о некоторых музеях и парках, подготовленные туристическим бюро, представлены в таблице. Пользуясь таблицей, подберите экскурсионную программу так, чтобы турист посетил не ме-нее трёх достопримечательностей за один день. В ответе для подобранной программы укажите номера экскурсий без пробелов, запятых и других дополнительных символов. Решение У туриста всего 10 часов. Если он выберет шестую экскурсию, то на третью экскурсию времени уже не хватит, а вот если выберет пятую, то вполне успевает и на первую. Та-ким образом, 5 и 1. При выборе четвертой успевает только на вторую. Таким образом, 4 и 2. При выборе третьей посмотреть три достопримечательности никак не успеет. Ответ: 1 и 5 или 2 и 4. Задача №13 Задания из этого раздела демо-варианта ЕГЭ проверяют знание стереометрии. Необходимо знать формулы нахождения площадей разных фигур: прямоугольного параллелепипеда, призмы, пирамиды, куба, цилиндра и т. д. Пример задачи В правильной треугольной пирамиде SABC медианы основания ABC пересекаются в точке O. Площадь треугольника ABC равна 2; объем пирамиды равен 4. Найдите длину отрезка OS. Решение Отрезок OS высотой треугольной пирамиды SABC, ее объем выражается формулой Значит, Ответ: 6.
|
|||
|