|
|||
Задача 1. Задача 2. Задача 3. Задача 4. Задача 5. Задача 6. Задача 7. Задача 8. Задача 9. Задача 10Стр 1 из 4Следующая ⇒
ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ Задача 1 Одноканальная СМО с отказами представляет собой одну телефонную линию. Заявка (вызов), пришедшая в момент, когда линия занята, получает отказ. Все потоки событий простейшие. Интенсивность потока Л = 0,95 вызова в минуту. Средняя продолжительность разговора i =1 мин. Определите вероятностные характеристики СМО в установившемся режиме работы. Задача 2 В одноканальную СМО с отказами поступает простейший поток заявок с интенсивностью Л = 0,5 заявки в минуту. Время обслуживания заявки имеет показательное распределение с I =1,5 мин. Определите вероятностные характеристики СМО в установившемся режиме работы. Задача 3 В вычислительном центре работает 5 персональных компьютеров (ПК). Простейший поток задач, поступающих на ВЦ, имеет интенсивность Л = 10 задач в час. Среднее время решения задачи равно 12 мин. Заявка получает отказ, если все ПК заняты. Найдите вероятностные характеристики системы обслуживания (ВЦ). Задача 4 В аудиторскую фирму поступает простейший поток заявок на обслуживание с интенсивностью Л = 1,5 заявки в день. Время обслуживания распределено по показательному закону и равно в среднем трем дням. Аудиторская фирма располагает пятью независимыми бухгалтерами, выполняющими аудиторские проверки (обслуживание заявок). Очередь заявок не ограничена. Дисциплина очереди не регламентирована. Определите вероятностные характеристики аудиторской фирмы как системы массового обслуживания, работающей в стационарном режиме. Задача 5 На пункт техосмотра поступает простейший поток заявок (автомобилей) интенсивности Л = 4 машины в час. Время осмотра распределено по показательному закону и равно в среднем 17 мин., в очереди может находиться не более 5 автомобилей. Определите вероятностные характеристики пункта техосмотра в установившемся режиме. Задача 6 На промышленном предприятии решается вопрос о том, сколько потребуется механиков для работы в ремонтном цехе. Пусть предприятие имеет 10 машин, требующих ремонта с учетом числа ремонтирующихся. Отказы машин происходят с частотой Л = 10 отк/час. Для устранения неисправности механику требуется в среднем I = 3 мин. Распределение моментов возникновения отказов является пуассоновским, а продолжительность выполнения ремонтных работ распределена экспоненциально. Возможно организовать 4 или 6 рабочих мест в цехе для механиков предприятия. Необходимо выбрать наиболее эффективный вариант обеспечения ремонтного цеха рабочими местами для механиков. Задача 7 В бухгалтерии предприятия имеются два кассира, каждый из которых может обслужить в среднем 30 сотрудников в час. Поток сотрудников, получающих заработную плату, - простейший, с интенсивностью, равной 40 сотрудников в час. Очередь в кассе не ограничена. Дисциплина очереди не регламентирована. Время обслуживания подчинено экспоненциальному закону распределения. Вычислите вероятностные характеристики СМО в стационарном режиме и определите целесообразность приема третьего кассира на предприятие, работающего с такой же производительностью, как и первые два. Задача 8 В инструментальном отделении сборочного цеха работают три кладовщика. В среднем за 1 мин. за инструментом приходят 0,8 рабочего ( Л= 0,8). Обслуживание одного рабочего занимает у кладовщика I = 1,0 мин. Очередь не имеет ограничения. Известно, что поток рабочих за инструментом - пуассоновский, а время обслуживания подчинено экспоненциальному закону распределения. Стоимость 1 мин. работы рабочего равна 30 д. е., а кладовщика - 15 д. е. Найдите средние потери цеха при данной организации обслуживания в инструментальном отделении (стоимость простоя) при стационарном режиме работы. Задача 9 Билетная касса работает без перерыва. Билеты продает один кассир. Среднее время обслуживания - 2 мин. на каждого человека. Среднее число пассажиров, желающих приобрести билеты в кассе в течение одного часа, равно Л = 20 пасс/час. Все потоки в системе простейшие. Определите среднюю длину очереди, вероятность простоя кассира, среднее время нахождения пассажира в билетной кассе (в очереди и на обслуживании), среднее время ожидания в очереди в условиях стационарного режима работы кассы. Задача 10 Пост диагностики автомобилей представляет собой одноканальную СМО с отказами. Заявка на диагностику, поступившая в момент, когда пост занят, получает отказ. Интенсивность потока заявок на диагностику Л = 0,5 автомобиля в час. Средняя продолжительность диагностики I = 1,2 часа. Все потоки событий в системе простейшие. Определите в установившемся режиме вероятностные характеристики системы.
|
|||
|