|
||||||||||
иперболоидыиперболоиды Определение 13.4 Однополостным гиперболоидом называется поверхность, каноническое уравнение которой имеет вид
где , , -- положительные числа. Исследуем форму однополостного гиперболоида. Так же, как эллипсоид, он имеет три плоскости симметрии, три оси симметрии и центр симметрии. Ими являются соответственно координатные плоскости, координатные оси и начало координат. Для построения гиперболоида найдем его сечения различными плоскостями. Найдем линию пересечения с плоскостью . На этой плоскости , поэтому Это уравнение на плоскости задает эллипс с полуосями и (рис. 13.8). Найдем линию пересечения с плоскостью . На этой плоскости , поэтому Это уравнение гиперболы на плоскости , где действительная полуось равна , а мнимая полуось равна . Построим эту гиперболу (рис. 13.8).
Рис.13.8.Сечения однополостного гиперболоида двумя плоскостями
Сечение плоскостью также является гиперболой с уравнением Нарисуем и эту гиперболу, но чтобы не перегружать чертеж дополнительными линиями, не будем изображать ее асимптоты и уберем асимптоты в сечении плоскостью (рис. 13.9). Найдем линии пересечения поверхности с плоскостями , . Уравнения этих линий Первое уравнение преобразуем к виду то есть к виду
где , . Уравнение (13.7) является уравнением эллипса, подобного эллипсу в плоскости , с коэффициентом подобия и полуосями и . Нарисуем полученные сечения (рис. 13.9).
Рис.13.9.Изображение однополостного гиперболоида с помощью сечений
Привычное для глаза изображение однополостного гиперболоида приведено на рисунке 13.10.
Рис.13.10.Однополостный гиперболоид
Если в уравнении (13.6) , то сечения гиперболоида плоскостями, параллельными плоскости , являются окружностями. В этом случае поверхность называется однополостным гиперболоидом вращения и может быть получена вращением гиперболы, лежащей в плоскости , вокруг оси (рис. 13.11).
Рис.13.11.Однополостный гиперболоид вращения
Определение 13.5 Двуполостным гиперболоидом называется поверхность, каноническое уравнение которой имеет вид
где , , -- положительные числа. Исследуем форму двуполостного гиперболоида. Так же, как эллипсоид и однополостный гиперболоид, он имеет три плоскости симметрии, три оси симметрии и центр симметрии. Ими являются соответственно координатные плоскости, координатные оси и начало координат. Для построения гиперболоида найдем его сечения различными плоскостями. Найдем линию пересечения с плоскостью . На этой плоскости , поэтому Координаты ни одной точки плоскости не могут удовлетворять данному уравнению. Следовательно, двуполостный гиперболоид не пересекает эту плоскость. Найдем линию пересечения с плоскостью . На этой плоскости , поэтому Это уравнение гиперболы на плоскости , где действительная полуось равна , а мнимая полуось равна . Построим эту гиперболу (рис. 13.12).
Рис.13.12.Сечения двуполостного гиперболоида плоскостью
Сечение плоскостью также является гиперболой, с уравнением Нарисуем и эту гиперболу, но чтобы не перегружать чертеж дополнительными линиями, не будем изображать ее асимптоты и уберем асимптоты в сечении плоскостью (рис. 13.13). Найдем линии пересечения поверхности с плоскостями , . Уравнения этих линий Очевидно, что ни одна точка не может удовлетворять этим уравнениям, если . Если или , то плоскость имеет с исследуемой поверхностью только одну точку или . Эти точки называются вершинами гиперболоида. Пусть . Первое уравнение преобразуем к виду то есть к виду
где , . Уравнение (13.9) является уравнением эллипса, подобного эллипсу в плоскости , с коэффициентом подобия и полуосями и . Нарисуем полученные сечения (рис. 13.13).
Рис.13.13.Изображение двуполостного гиперболоида с помощью сечений
Привычное для глаза изображение двуполостного гиперболоида приведено на рисунке 13.14.
Рис.13.14.Двуполостный гиперболоид
Если в уравнении (13.8) , то сечения гиперболоида плоскостями, параллельными плоскости , являются окружностями. В этом случае поверхность называется двуполостным гиперболоидом вращения и может быть получена вращением гиперболы, лежащей в плоскости , вокруг оси (рис 4.15).
Рис.13.15.Двуполостный гиперболоид вращения
|
||||||||||
|