|
|||
Примеры задач. Размещения. ПримерыПримеры задач Таким образом , число всевозможных перестановок из n элементов вычисляется по формуле: Рn=n! Пример 1. Сколькими способами могут быть расставлены 8 участниц финального забега на восьми беговых дорожках? Р8=8!=40320 Пример 2. Сколько различных четырехзначных чисел, в которых цифры не повторяются, можно составить из цифр 0, 2, 4, 6? Из цифр 0,2,4,6 можно получить Р4 перестановок. Из этого числа надо исключить те перестановки , которые начинаются с 0.Получаем: Р4-Р3=4!-3!=18 Размещения Пусть имеется 4 шара и 3 пустых ячейки . В пустые ячейки можно по-разному разместить три шара из этого набора шаров . Выбирая разными способами первый , второй и третий шары , будем получать различные тройки шаров. Каждую упорядоченную тройку , которую можно составить из четырех элементов , называют размещением из четырех элементов по три Размещением из n элементов по к (к<n) называется любое множество , состоящее из любых к элементов , взятых в определенном порядке из данных n элементов Число размещений из n элементов по к обозначают Читают « А из n по к » Примеры 1. Учащиеся второго класса изучают 8 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета? В этом примере речь идет о размещениях из 8 элементов по 4. Имеем: 1. Учащиеся второго класса изучают 8 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета? В этом примере речь идет о размещениях из 8 элементов по 4. Имеем:
|
|||
|