|
|||
KL:=add((nuL[i]-10)^2/10,i=1..10): 'nu[L]'=nuL,'K[L]'=KL,``=evalf[6](KL); ⇐ ПредыдущаяСтр 2 из 2 KL: =add((nuL[i]-10)^2/10, i=1.. 10): 'nu[L]'=nuL, 'K[L]'=KL, ``=evalf[6](KL); for alpha in Alpha do if QChiSq8[alpha]< =KL then print('alpha'=alpha, " hypothesis L0 denied" ) else print('alpha'=alpha, " hypothesis L0 valid" ) end if end do: ======================================================================= 3. Histogram ___________________________________________________________________ > Tally10=evalf[6](TallyInto(xi, default, bins=10)); H10: =Histogram(xi, bincount=10): Hd: =Histogram(xi, bincount=deduce): PfN: =plot(fN0(x), x=xi[1]-2.. xi[n]+2, thickness=2, color=green): PfL: =plot(fL0(x), x=xi[1]-2.. xi[n]+2, thickness=3): plots[display](H10, PfN, PfL); plots[display](Hd, PfN, PfL); ====================================================================== 4. Доверительные интервалы для m, D, = симметричный нормальный квантиль по уровню _____________________________________________ > (t07, t095): =(Quantile(N0, 0. 5+0. 7/2, numeric), Quantile(N0, 0. 5+0. 95/2, numeric)); > I[0. 7]^`(m)`=evalf[7]([mean-t07*Sn/sqrt(n), mean+t07*Sn/sqrt(n)]), I[0. 95]^`(m)`=evalf[7]([mean-t095*Sn/sqrt(n), mean+t095*Sn/sqrt(n)]), 'conjugate(x[n])'=evalf[7](mean); I[0. 7]^`(D)`=evalf[7]([Sn2*(1-t07*sqrt(2/n)), Sn2*(1+t07*sqrt(2/n))]), I[0. 95]^`(D)`=evalf[7]([Sn2*(1-t095*sqrt(2/n)), Sn2*(1+t095*sqrt(2/n))]), 'S[n]^2'=evalf[7](Sn2); I[0. 7]^sigma=evalf[7]([Sn*sqrt(1-t07*sqrt(2/n)), Sn*sqrt(1+t07*sqrt(2/n))]), I[0. 95]^sigma=evalf[7]([Sn*sqrt(1-t095*sqrt(2/n)), Sn*sqrt(1+t095*sqrt(2/n))]), 'S[n]'=evalf[7](Sn); >
|
|||
|