Хелпикс

Главная

Контакты

Случайная статья





4. Conclusions. Acknowledgements.. References



4. Conclusions

As can be seen from the results of this study, the complete purification of pumped out pit waters as a result of filtration through the bog massif does not occur. At the same time, the discharge of bog (actually drainage) waters enriched with 40K, 226Ra, and 232Thinto the channel of the Zolotitsa River occurs over a fairly wide area, about 3 km long, which can be seen from the radionuclides found in the bottom sediments. This conclusion is supported by the fact that the nature of the increased 137Cs activity in bottom sediments in this area repeats the pattern of changes in 232Th and 226Ra. The technogenic isotope, 137Cs, formed in the course of nuclear tests in the atmosphere and accidents at nuclear power plants cannot be found in the drainage water, therefore, its presence in bottom sediments can be explained solely by washout from the earth's surface. During the discharge of drainage water into the bog, 137Cs, which is fixed in the upper layer of peat as a result of global fallout, is activated and it migrates from a large area of the bog massif and is unloaded into the channel of the Zolotitsa River together with 40K, 226Ra, and 232Th.

Acknowledgements.

The research was accomplished due to financial support provided by Russian Scientific Fund Grant No. 20-77-10057 «Diagnostics of permafrost degradation basing on isotope tracers (234U/238U, δ 18O+δ 2H, δ 13C+14C)», the project supervised by E. Yu. Yakovlev, Candidate of Geological and Mineralogical Sciences.

References

 

1. Akram M., R. M. Qureshi, N. Ahmad, T. J. Solaija, A. Mashiatullah, M. Afzal, M. U. Faruq, and L. Zeb, 2006. J. Chem. Soc. Pakistan. 28 (3), 306.

2. Al-trabulsy H. A., A. E. M. Khater and F. I. Habbani, 2011. Radiat. Phys. Chem. 80 (3), 343. . Crossref.

3. AMAP Assessment. 2015. Radioactivity in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. 89. www. amap. no

4. Antony M. R., J. K. P. Eappen and A. K. Visnuprasad, 2019. J. Radioanal. Nucl. Chem. 320 (2), 291. . Crossref.

5. Aybulatov N. A. 2000. Ecological echo of the cold war in the seas of the Russian Arctic. GEOS.

6. Cá mara-Mor P., Masqué P., Garcia-Orellana J., Cochran J. K., Mas J. L., Chamizo E., Hanfland C. 2010. Arctic Ocean sea ice drift origin derived from artificial radionuclides. Science of The Total Environment, 408(16), 3349-3358 https: //doi. org/10. 1016/j. scitotenv. 2010. 03. 041

7. Chen J., Zhang W., Sadi B., Wang X., Muir D. C. G. 2017. Activity concentration measurements of selected radionuclides in seals from Canadian Arctic. Journal of Environmental Radioactivity, 169–170, 48-55. https: //doi. org/10. 1016/j. jenvrad. 2016. 12. 015

8. Crane K., Galasso J., Brown C., Cherkashov G., Ivanov G., Vanstain B. 2000. Northern Ocean Inventories of Radionuclide Contamination: GIS Efforts to Determine the Past and Present State of the Environment in and Adjacent to the Arctic. Marine Pollution Bulletin, 40 (10), 853-868. https: //doi. org/10. 1016/S0025-326X(00)00084-9

9. Cwanek A., Mietelski J. W., Ł okas E., Olech M. A., Anczkiewicz R., Misiak R. 2020. Sources and variation of isotopic ratio of airborne radionuclides in Western Arctic lichens and mosses. Chemosphere, 239, 124783 https: //doi. org/10. 1016/j. chemosphere. 2019. 124783

10. Dowdall M., Gwynn J. P., Moran C., O'Dea J., Davids C., Lind B. 2005. Uptake of radionuclides by vegetation at a High Arctic location, Environmental Pollution, 133, 327-332. https: //doi. org/10. 1016/j. envpol. 2004. 05. 032

11. El Mamoney M. H. and A. E. M. Khater. 2004. J. Environ. Radioact. 73. 151. Crossref.

12. Eriksson M., Osá n J., Jernströ m J., Wegrzynek D., Simon R., Chinea-Cano E., Markowicz A., Bamford S., Tamborini G., Tö rö k S., Falkenberg G., Alsecz A., Dahlgaard H., Wobrauschek P., Streli C., Zoeger N., Betti M. 2005. Source term identification of environmental radioactive Pu/U particles by their characterization with non-destructive spectrochemical analytical techniques. Atomic Spectroscopy, 60(4), 455-469. https: //doi. org/10. 1016/j. sab. 2005. 02. 023

13. Gofarov M. Yu., Bolotov I. N., Kutinov Yu. G. 2006. Landscapes of the White Sea-Kuloi Plateau: Tectonics, underlying rocks, relief and vegetation cover. Yekaterinburg. 140.

14. Ilin G. V., Kasatkina N. E., Moiseev D. V., Usyagina I. S. 2017. Infrastructure Objects of the Nuclear Fleet as Sources of Radioactive Contamination of the Barents Sea: Waste Repository in Guba Andreeva. Atomic Energy, 2, 131-137. DOI 10. 1007/s10512-017-0247-7

15. Islam Al Amin Md Sirajul, Md. Moazzem Hossain Miah, Mahiuddin Ahmed, Shahadat Hossain, Mayeen Uddin Khandaker. 2021. The presence of terrestrial radionuclides in the Karnaphuli and Halda river sediments and concomitant hazards to the dwellers. International Journal of Environmental & Analytical Chemistry. 1-11. https: //doi. org/10. 1080/03067319. 2021. 1912339

16. Johannessen O. M., Volkov V. A., Pettersson L. H., Maderich V. S., Zheleznyak M. J., Gao Y., Bobylev L. P., Stepanov A. V., Neelov I. A., Tishakov V. P., Nielsen S. P. 2010. Radioactivity and Pollution in the Nordic Seas and Arctic Region, Observations, Modeling and Simulations. Springer, Berlin https: //doi. org/10. 1007/978-3-540-49856-8

17. Karpenko F. S. 2008. Influence of saponite on the stability of hydraulic structures of tailing dumps at the M. V. Lomonosov, Arkhangelsk region. Geoecology. 3. 269–271.

18. Kershaw P. J., McCubbin D., Leonard K. S. 1999. Continuing contamination of north Atlantic and Arctic waters by Sellafield radionuclides. Science of The Total Environment, 237–238, 119-132 https: //doi. org/10. 1016/S0048-9697(99)00129-1

19. Khalturin V. I., Rautian T. G., Richards P. G., Leith W. S. 2005. A review of nuclear testing by the Soviet Union at Novaya Zemlya, 1955–1990. Sci. Global Secur., 13, 1-42, https: //doi. org/10. 1080/08929880590961862

20. Kiselev G. P., Kryauchyunas V. V., Kiselyova I. M., Zykov S. B., Bazhenov A. V. 2005. Natural radioactivity of the European North and its anthropogenic changes. Environmental Geoscience, 3, 205–218.

21. Kiselev G. P., Yakovlev E. Y., Druzhinin S. V., Galkin A. S. 2017. Distribution of radioactive isotopes in rock and ore of Arkhangelskaya pipe from the Akhangelsk diamond province. Geology of Ore Deposits. 59. 5. 391-406. https: //doi. org/10. 1134/S1075701517050014

22. Kiselev G. P., Yakovlev E. Y., Druzhinin S. V., Zykov S. B., Kiseleva I. M., Bagenov A. V. 2018. Radioactive investigation of the impact the Kostomuksha mining enterprise on the radioecological state of adjacent areas, the republic of Karelia, the Russian federation. Environmental Earth Sciences. 77. 7. 264.

23. Kramer D. A. 2015. Assessment of anthropogenic impact on the pollution of bottom sediments of small rivers on the example of Moscow. Abstract dis. ... candidate of chemical sciences / Kazan. Moscow,. https: //elibrary. ru/item. asp? id=30414404

24. Ł okas E., Mietelski J. W., Ketterer M. E., Kleszcz K., Wachniew P., Michalska S., Miecznik M. 2013. Sources and vertical distribution of 137Cs, 238Pu, 239+240Pu and 241Am in peat profiles from southwestern Spitsbergen. Appl. Geochem, 28, 100-108. DOI: 10. 1016/j. apgeochem. 2012. 10. 027

25. Masqué P., Cochran J. K., Hirschberg D. J., Dethleff D., Hebbeln D., Winkler A., Pfirman S. 2007. Radionuclides in Arctic sea ice: Tracers of sources, fates and ice transit time scales. Deep Sea Research, 54(8), 1289-1310. https: //doi. org/10. 1016/j. dsr. 2007. 04. 016

26. Matishov G. G., Kasatkina N. E., Usyagina I. S. 2019. Technogenic Radioactivity of Waters in the Central Arctic Basin and Adjacent Water Areas, Doklady Earth Sciences. 485, 1, 288-292 DOI: https: //doi. org/10. 31857/S0869-5652485193-98

27. Matishov G. G., Matishov D. G., Usyagina I. S., Kasatkina N. E. 2014. Long-term dynamics of radioactive contamination in the Barents-Kara region (1960-2013), Doklady Earth Sciences, 458(4), 473-479. DOI10. 1134/S1028334X11080265

28. Matiyashchuk S. V., Lazareva O. S. 2010. Commentary to the Federal Law of November 21, 1995 No. 170-FZ " On the Use of Atomic Energy". Litagent " Justicinform", Moscow.

29. Methods for measuring the activity of radionuclides using a scintillation gamma spectrometer with Progress software. - Moscow: LLC STC " Amplitude", 2016. 12. http: //amplituda. ru/services/metodicheskoe-obespechenie/mvi/metodika-izmereniya-aktivnosti-radionuklidov-s-ispolzovaniem-stsintillyatsionnogo-gamma-spektrometra-s-programmnym-obespecheniem-progress

30. Mikhailov V. N. 2006. Nuclear Tests in the Arctic, Moscow Textbooks, Moscow.

31. Miroshnikov A. Y., Laverov N. P., Chernov R. A., Kudikov A. V., Ysacheva A. A., Semenkov I. N., Aliev R. A., Asadulin E. E., Gavrilo M. V. 2017. Radioecological investigations on the Northern Novaya Zemlya Archipelago. Oceanology, 1, 204-214. DOI: 10. 1134/S000143701701009X

32. Mohammed C. A. R., Z. U. W. Mahmood, Z. Ahmad and A. B. D. K. Ishak, 2010. Coast. Mar. Sci. 34 (1), 165.

33. Povinec P. P., Gera M., Holy K., Hirose K., Lujaniene G., Nakano M., Plastino W., Sykora I., Bartok J., Gaž ak M. 2013. Dispersion of Fukushima radionuclides in the global atmosphere and the ocean, Appl. Radiat. Isot. , 81, 383-392. DOI: 10. 1016/j. apradiso. 2013. 03. 058

34. Reza M., S. Hassanzadeh, M. Kamali and H. Reza, 2009. Mar. Pollut. Bull. 58 (5), 658. . Crossref. PubMed.

35. Sam A. K., A. A. Eiganawi, M. M. O. Ahamed and F. A. Eikhangi, 1998. J. Radioanal. Nucl. Chem. 237, 103. . Crossref.

36. Saniewski M., Wietrzyk-Peł ka P., Zalewska T., Olech M., Wę grzyn M. H. 2020. Bryophytes and lichens as fallout originated radionuclide indicators in the Svalbard archipelago (High Arctic). Polar Science, 25, 100536 https: //doi. org/10. 1016/j. polar. 2020. 100536

37. Sarkisov A. A., Sivincev Yu. V., Vysockij V. L., Nikitin V. S. 2015. The atomic legacy of the Cold War at the bottom of the Arctic. Radioecological and technical and economic problems of radiation rehabilitation of the seas. IBRAE RAS, Moscow.

38. Smith J. N., Ellis K. M., Polyak L., Ivanov G., Forman S. L., Moran S. B. 2000. 239, 240Pu transport into the Arctic Ocean from underwater nuclear tests in Chernaya Bay, Novaya Zemlya. Cont. Shelf Res. , 20 (3), 255-279.

39. Strand P., Howard B. J., Aarkrog A., Balonov M., Tsaturov Y., Bewers J. M., Salo A., Sickel M., Bergman R., Rissanen K. 2002. Radioactive contamination in the Arctic-sources, dose assessment and potential risks. Journal of Environmental Radioactivity, 60, 5-21. https: //doi. org/10. 1016/S0265-931X(01)00093-5

40. Thakur P., Ballard S., Nelson R. 2013. An overview of Fukushima radionuclides measured in the northern hemisphere. Sci. Total Environ. , 458–460, 577-613 https: //doi. org/10. 1016/j. scitotenv. 2013. 03. 105

41. The lithosphere and hydrosphere of the European North of Russia. Geoecological problems. Yekaterinburg, 2001. 408.

42. Tracy B. L., Prant F. A., Quinn J. M. 1984. Health impact of radioactive debris from the satellite Cosmos-954. Health Phys. , 47, 225-233. DOI: 10. 1097/00004032-198408000-00001

43. UNSCEAR, 2000. Sources and effects of ionizing radiation. United Nations, NewYork: Report to the General Assembly with Annexes. https: //doi. org/10. 18356/2c4203dc-en

44. Vakulovsky S. M., Kryshev I. I., Nikitin A. I., Savitsky T. V., Tertyhnik EG. 1995. Radioactive contamination in the Yenisey River. J. Environ Radioact, 29 (3), 225-236.

45. Vorobiova M. I., Degteva M. O., Burmistrov D. S., Safronova N. G., Kozheurov V. P., Anspaugh L. R. 1999. Review of historical monitoring data on Techa River contamination. Health Phys, 76 (6), 605-618. DOI: 10. 1097/00004032-199906000-00003

46. Waters R. D., Compton K. L., Noikov V., Parker F. L. 1999. Releases of radionuclides to surface waters at Krasnoyarsk-26 and Tomsk-7. International Institute for Applied Systems Analysis, Laxenburg. http: //pure. iiasa. ac. at/5819

47. Yakovlev E. Yu., A. I. Malov, S. V. Druzhinin, E. N. Zykova, A. S. Orlov. 2020. Transformation of the radionuclides composition of river sediments in the area of the exploited Lomonosov diamond deposit (NW Russia), Journal of Environmental Radioactivity, 213, 106142, https: //doi. org/10. 1016/j. jenvrad. 2019. 106142.

48. Yakovlev E. & Puchkov, Andrey & Bykov, Vladimir. 2021. Assessing the natural and anthropogenic radionuclide activities of the Pechora River estuary: Bottom sediments and water (Arctic Ocean Basin). Marine Pollution Bulletin. 172. 112765. 10. 1016/j. marpolbul. 2021. 112765

49. Yakovlev, E. & Puchkov, Andrey. 2020. Assessment of current natural and anthropogenic radionuclide activity concentrations in the bottom sediments from the Barents Sea. Marine Pollution Bulletin. 160. 111571. 10. 1016/j. marpolbul. 2020. 111571

50. Zykov S. B., Druzhinin S. V. 2012. Radiological assessment of the state of the Arctic and subarctic territories in the western sector of the Russian Arctic // Arctic floating university-2012. Materials of a comprehensive scientific and educational expedition: in 2 parts. Northern (Arctic) Federal University named after M. V. Lomonosov; Northern Directorate for Hydrometeorology and Environmental Monitoring; All-Russian public organization " Russian Geographical Society". Arkhangelsk. 287-335.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.