![]()
|
|||
drop1(p.lm4,test=Chi) ⇐ ПредыдущаяСтр 4 из 4 AIC() AIC(p. lm3, p. lm4) df AIC p. lm3 11 578. 3099 p. lm4 19 567. 4625
drop1() drop1(p. lm4, test=" Chi" ) Single term deletions
Model: abundance ~ NAP * fBeach Df Sum of Sq RSS AIC Pr(> Chi) < none> 339293 437. 76 NAP: fBeach 8 276845 616138 448. 61 0. 0007512 *** --- Signif. codes: 0 ‘***’ 0. 001 ‘**’ 0. 01 ‘*’ 0. 05 ‘. ’ 0. 1 ‘ ’ 1
drop1(p. lm4, test=" F" ) Single term deletions
Model: abundance ~ NAP * fBeach Df Sum of Sq RSS AIC F value Pr(> F) < none> 339293 437. 76 NAP: fBeach 8 276845 616138 448. 61 2. 7538 0. 0231 * --- Signif. codes: 0 ‘***’ 0. 001 ‘**’ 0. 01 ‘*’ 0. 05 ‘. ’ 0. 1 ‘ ’ 1
drop1(p. lm3, test=" F" ) Single term deletions
Model: abundance ~ NAP + fBeach Df Sum of Sq RSS AIC F value Pr(> F) < none> 616138 448. 61 NAP 1 6559 622697 447. 08 0. 3726 0. 54555 fBeach 8 390683 1006821 454. 70 2. 7741 0. 01734 * --- Signif. codes: 0 ‘***’ 0. 001 ‘**’ 0. 01 ‘*’ 0. 05 ‘. ’ 0. 1 ‘ ’ 1
anova(m) anova(m1, m2) - вывод значимости факторов в целом - использование факторов для дисперсионного анализа - сравнение моделей anova(p. lm3) Analysis of Variance Table
Response: abundance Df Sum Sq Mean Sq F value Pr(> F) NAP 1 1213 1213 0. 0689 0. 79444 fBeach 8 390683 48835 2. 7741 0. 01734 * Residuals 35 616138 17604 --- Signif. codes: 0 ‘***’ 0. 001 ‘**’ 0. 01 ‘*’ 0. 05 ‘. ’ 0. 1 ‘ ’ 1
anova(p. lm3, p. lm4) Analysis of Variance Table
Model 1: abundance ~ NAP + fBeach Model 2: abundance ~ NAP * fBeach Res. Df RSS Df Sum of Sq F Pr(> F) 1 35 616138 2 27 339293 8 276845 2. 7538 0. 0231 * --- Signif. codes: 0 ‘***’ 0. 001 ‘**’ 0. 01 ‘*’ 0. 05 ‘. ’ 0. 1 ‘ ’ 1 оценка качества модели: plot() boxplot(residuals(p. lm4)~p1$fBeach)
|
|||
|