Хелпикс

Главная

Контакты

Случайная статья





Элементарные преобразования матрицы



 

Матрицы размерности(m*n) называется таблица чисел где m-количество строк, n-количество столбцов.

Виды матриц:

1) матрица строка

2) матрица столбец

3) квадратная матрица(m=n)

4) треугольная матрица

-верхняя-под диагональю все нули

-нижняя-над диагональю все нули

5) диагональная матрица-все нули кроме диагонали

6) диагональная со всеми единицами(всегда квадратная)

Матрицы называются равными-если их размерности и числа одинаковы

Транспортированная матрица -это матрица, у которой строки и столбцы поменялись местами.

Ранг матрицы- порядок базиного минора, а базисным минором называется минор максимального порядка не раынй нулю. Ранг матрицы — наивысший из порядков отличных от нуля миноров этой матрицы

 

Элементарные преобразования матрицы

1) умножение строки на столбец

2) перестановка строк

3) прибавление к строке другой строки

Элементарные преобразования не изменяют рангам матрицы.

 

Определители бывают только для квадрантных матриц и это-число.

Формула для определителей:

∆ ≡ det=(-1)¹ +¹ aı ı Mı ı +(-1)¹ +² aı 2 Mı 2+…+(-1)¹ +ⁿ aı nMı n

Это и есть определение определителя.

Определитель(∆ ) можно считать разложением по элементам любой строки или столбца(Без доказательства).

Метод математической индцкции-это метод определения или доказательства.

Доказательство метода индукции:

1. Убеждаемся в справедливости утверждения при n=1

2. Считаем что утверждение верно при n→ n(-1).

3. С помощью известных истин математических и утверждения теоремы, убеждаемся в справедливости теоремы при n=n.

Свойства определителей:

 

I. 1) det A=det A¹



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.