Хелпикс

Главная

Контакты

Случайная статья





Related U.S. Application Data 4 страница



US 9, 539, 210 B2

Page 12


(56)                     References Cited

OTHER PUBLICATIONS

Adams, et al., Amphiphilic block copolymers for drug delivery, J. Pharm. Sei., 92(7): 1343-55 (2003).

Balenga, et al., “Protective efficiency of dendrosomes as novel nano-sized adjuvants for DNA vaccination against birch pollen allergy”, J Biotech., 123(3): 602-14 (2006).

Barinka, et al., “Interactions between human glutamate carboxypeptidase II and urea-based inhibitors: Structural character­ization”, J Med. Chem., 51: 7737-43 (2008).

Barinka, et al., “Structural insight into the pharmacophore pocket of human glutamate carboxypoeptidase II”, J. Med Chem., 50: 3267-73 (2007).

Beck, et al., “A New Long-acting Injectable Microcapsule System for the Administration of Progesterone, ” Fertil. & Steril., 31(5): 545- 55 (1979).

Benita, et al., “Characterization of Drug-Loaded Poly(d, /-lactide) Microspheres” J. Pharm. Sci. 73(12): 1721-24 (1984).

Caliceti, et al. “Effective protein release from PEG/PLA nano­particles produced by compressed gas anti-solvent precipitation techniques”, J of Cont. Release, 94: 195-205 (2004).

Ch’ng, et al., “Bioadhesive Polymers as Platforms for Oral Con­trolled Drug Delivery II: Synthesis and Evaluation of Some Swell­ing, Water-Insoluble Bioadhesive Polymers, ” J. Pharm. Sci. 74: 399-405 (1988).

Chandran, et al, “Characterization of a targeted nanoparticle functionalized with a Urea-based inhibitor of prostate-specific membrane antigen (PSMA)”, Cancer Biol & Therapy, 7(4): 1-9 (2008).

Chen, et al., “Radiohalogenated prostate-specific membrane antigen (PSMA)-based ureas as imaging agents for prostate cancer”, J Med Chem., 51(24): 7933-43 (2008).

Chickering & Mathiowitz, “Bioadhesive microspheres: i. A novel electrobalance-based method to study adhesive interactions between individual microspheres and intestinal mucosa, ” J. Control. Release 34: 251-62 (1995).

Dancey, et al., “Therapeutic Targets: MTOR an related pathways”, Cancer Biol. Ther., 5(9): 1065-73 (2006).

Duchene, et al., “Pharmaceutical and Medical Aspects of Bioadhesive Systems for Drug Administration, ” Drug Development &. Ind. Pharm. I4(2& 3): 283-31 (1988).

Ewesuedo and Ratain, “Systemically administered drugs”, Drug Delivery Systems in Cancer, Humana Press, Chapter 1: 3-14 (2004). Farokhzad, et al., “Cancer nanotechnology: drug encapsulated nanoparticle-aptmer bioconjugates for targeted delivery to prostate cancer cells”, 13th Eu. Cancer Conf., Oct. 30-Nov. 3, Paris France (2005).

Gu, et al., “Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers”, PNAS, 105(7): 2586-91 (2008).

Gurney, et al., “Bioadhesive intraoral release systems: design, testing and analysis, ” Biomaterials 5: 336-40 (1984).

Hamdy, et al., “Со-delivery of cancer-associated antigen and toll­like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity”, Vaccine, 26(39): 5046-57 (2008).

Hong, et al., “Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapdulated in biode­gradable nanoparticles”, Immunol., 117(l): 78-88 (2006).

Humblet, et al. “An HPLC/mass spectrometry platform for the development of multimodality contrast agents and targeted thera­peutics: prostate-specific membrane antigen small derivatives”, Contrast Med. Mol. Imaging, 1: 196-211 (2006).

Humblet, et al. “High-affinity near-infrared fluorescent small-mol­ecule contras agents for in vivo imaging of prostate-specific mem­brane antigen”, Molecular Imaging, 4: 448-62 (2005).

Igaku, “Intracellular trafficking of lipid antigens and their immune recognition by the CD1 system”, Exp. Med., 24(7): 936-40 (2006). Ilium, “Bioadhesive Microspheres as Potential Nasal Drug Delivery System, ” Int’l J. Pharm. 39: 189-99 (1987).


Jiang, et al., “Preparation of PLA and PLGA nanoparticles у binary organic solvent diffusion method”, J. Cent. South Univ Technol, 10(3): 202-06 (2003).

Kozikowski, et al. “Design of remarkably simple, yet potent urea- based inhibitors of glutamate carboxypeptidase II (NAALADase)”, J. Med Chem, 44: 298-301 (2001).

Labat-Robert & Decaens, “Glycoproteines du mucus gastrique: structure, fonctions et pathologie, ” Pathologie Biologie 24: 241 (Paris 1979).

Lehr, et al., “In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers, ” International J. Pharmaceutics 78: 43-48 (1992).

Lehr, et al., “Intestinal transit of bioadhesive microspheres in an in situ loop in the rat—a comparative study with copolymers and blends based on poly(acrylic acid), ” J. Controlled Rel. 13: 51-62 (1990).

Leon-Bay, et al., “Microsphere formation and drug delivery in a series of derivatized amino acids, ” Winter conference of Medicinal Chemistry (Steamboat Springs, Colarodo 1995).

Maresca, et al., “A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer”, J. Med Chem., 52(2): 347-57 (2009). Martinez-Pomares, et al., “Fc chimeric protein containing the cys­teine-rich domain of the murine mannose receptor binds to macrophages from splenic marginal zone and lymph node subcapsular sinus and to germinal centers”, J Experimental Med., 184(5): 1927-37 (1996).

Mathiowitz, et al., “Morphology of polyanhydride microsphere delivery systems, ” Scanning Microscopy 4(2): 329-340 (1990).

Mease, et al., “N-[N-[(S)-l, 3-Dicarboxypropyl]carbamoyl]-4- [18F]fluorobenzyl-L-cysteine, [18FJDCFBC: a new imaging probe for prostate cancer”, Clin. Cancer Res., 14(10): 3036-43 (2008).

Mikos, et al., “Interaction of Polymer Microspheres with Mucin Gels as a Means of Characterizing Polymer Retention on Mucus, ” J. Colloid & Interface Sci. 143(2): 366-73 (1991).

Misra, et al., “Production of multimeric prostrate-specific mem­brane antigen small-molecule radiotracers using a solid-phase 99mTc preloading strategy”, J Nuclear Medicine, 48(8): 1379-89 (2007).

Pomper, et al., “New developments in molecular Imaging of pros­tate cancer”, Topical Symposium on Advanced Molecular Imaging Techniques in the detection, diagnosis, therapy and follow-up of Cancer, Palazzo Barberini, Rome Dec. 6, 2005.

Pulkkinen, et al., “Three-step tumor of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biolin technology: Formulation developing and in vitro anticancer activity”, Eur. J Pharm. Biopharm., 70: 66-74 (2008).

Raghuvanshi, et al., “Improved immune response from biodegrad­able polymer particles entrapping tetanus toxlod by use of different immunization protocol and adjuvants”, Int J Pharm., 245(1-2): 109­21 (2002).

Sapra, et al., “Ligan-targeted liposomal anticancer drugs”, Pergamon, Progress in Lipid Research, 42: 439-462 (2003).

Scawen, et al., “The Action of Proteolytic Enzymes on the Glycoprotein from Pig Gastric Mucus, ” Biochemical J. 163: 363-68 (1977).

Smart, et al., “An in vitro investigation of mucosa-adhesive mate­rials for use in controlled drug delivery, ” J. Pharm. & Pharmacol. 36: 295-99 (1984).

Spiro, “Glycoproteins, ” Annual Review of Biochemistry 39: 599­638 (Snell, ed. 1970).

Surgery Frontier, “What’s new in surgery frontier”, 13(3): 290-3 (2006).

Sweetman, “Entry for Docetaxel”, Martindale: the complete drug reference, 33rd ed., p. 534 (2002).

Tobio, et al. /‘Stealth PLA-PEG nanoparticlea as protein camera for nasal administration”, Pharm. Res., 15(2): 270-75 (1998).

Walter, et al., “Hydrophillic poly (DL-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells”, J Control Release, 76(1-2): 149­68 (2001).



 

US 9, 539, 210 B2

Page 13


(56)                     References Cited

OTHER PUBLICATIONS

Yamamoto, et al., “Long-circulation Poly(ethylene glycol)- poly(D, L-lactide) block copolymermicelles with modulated surace chane”, J Conti Rel., 77: 27-38 (2001).

Akagi, et al., “Preparation and characterization of biodegradable nanoparticies based on polyOgamma-glutamic acid) with L-Phenyl- alanine as a protein carrier”, J Control Release, 108: 226-36 (2005). Akagi, et al., “Protein direct delivery to dendritic cells using nanoparticies based on amphiphilic poly(amino acid) derivatives”, Biomaterials, 28: 3427-36 (2007).

Akerman, et al., “Nanocrystal targeting in vivo”, PNAS, 99(20): 12617-21 (2002).

Anderson, et al., “Biodegradation and biocompatibility of PLA and PLGA microspheres”, Adv Drug Delivery, 28: 5-24 (1997).

Bilati, et al., “Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticies”, Eu J Pharma Sci., 24(l): 67-75 (2005).

CAS Reg. No. 1069-79-0, 4 pages, Entered STN: 11-16-1984.

Chen, et al., “Beta-arrestin 2 mediates endocytosis of type II TGF-beta receptor and down-regulation of its signaling”, Science, 301: 1394-7 (2003).

Deng, et al., Optimization of preparative conditions for poly-DL- lactide-polyetyhlene glycol microspheres with entrapped Vibrino Cholera antigens, J Control Release, 58(2): 123-31 (1999).

Diwan, et al., “Biodegradable nanoparticle mediated antigen deliv­ery to human cord blood derived dendritic cells for induction of primary T cell responses”, J Drug Targeting, 11(8-10): 495-507 (2003).

Drug Delivery Systems, 22(3): 289 (2007).

Fahmy, et al., “Targeted for drug delivery”, Nano Today, 18-26 (2005).

Farokhzad, “Nanotechnology for drug delivery: the perfect partner­ship”, Exp Opin Drug Deliv., 5(9): 927-9 (2008).

Henrickson, et al., “T cell sensing of antigen dose governs interac­tive behavior wit dendritic cells and sets a threshold for T cell activation”, Nat Immunol., 9(3): 282-91 (2008).

Journal of Pediatric Practice, 64(9): 1389-94 (2001).

Life Technologies, retrieved from the internet http: //www. lifetechnologies. com/us/en/home/references/protocols/nucleic- acid-purification-and-analysis/ma-protocal/agarose-gel-electropho- resis-of-ma. html, retrieved May 30, 2014.

Morein, et al., “Current status and potential application of ISCOMs in veterinary medicine”, Adv Drug Deliv Rev., 56: 1367-82 (2004). Nobs, et al., “Surface modification of poly(lactic acid) nanoparticies by covalent attachment of thiol groups by means of three methods”, Inti J Pharma., 250: 327-37 (2003).

Ohuchi, et al., “Selection of RNA aptamers against recombinant transforming growth factor-2 type III receptor displayed on cell surface”, Biochimie, 88: 897-904 (2006).

Olszewski, et al., “NAAG peptidase inhibition reduces locomotor activity and some stereotypes in the PCP model of schizophrenia via group II mGluR”, J Neurochem., 89: 876-85 (2004).

Ponchel, et al., “Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract”, Eu J Pharma Biopharma., 44: 25-31 (1997).


Raghavan, et al., “Fc receptors and their interactions with immu­noglobulins”, Annu Rev Cell Dev., 12: 181-220 (1996) Abstract Only.

Ravetch and Bolland, “IgG Fc Receptors”, Ann Rev Immunol., 19: 275-90 (2001).

Schiffelers, et al., “Cancer siRNA theraphy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle”, Nucleic Acids Res., 32(19): 1-10 (2004).

Scholfield, “Composition of soybean lecithin”, J Am Oil Sci Soc., 58(10): 889-92 (1981).

Shadidi and Sioud, “Selection of peptides for specific delivery of oligonucleotides into cancer cells”, Methods Molecular Biol., 252: 569-80 (2004).

Singh, et al., “Nanoparticies and microparticles as vaccine-delivery systems”, Expert Rev. Vaccines, 6(5): 797-808 (2007).

Tamura, et al., “Regulation of Th2 responses by CpG motifs”, Respiration, 121(12): 1147-55 (2002).

Truong-Le, et al., “Gene transfer by DNA-Gelation nanospheres”, Biochem and Biophy., 381: 47-55 (1999).

Van de Winkel, et al., “Human Igl Fc receptor heterogeneity: molecular aspects and clinical implications”, Immunology Today, 14(5): 215-21 (1993).

Wakita, et a.., “Mechanisms for complete eradication of large tumor mass by liposome-CpG nanoparticle tumor vaccine”, Clinical Immunology, 45(5): 483-90 (2006).

Wei, et al., “Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigens by premix membrane emulsification”, J Colliod Interface Sci., 323(2): 267-73 (2008). Yamamoto, et al., “Antinociceptive effects of N-acetylaspartylglutamate (NAAG) peptidase inhibitors ZJ-11, ZJ-17 and ZJ-43 in the rat formalin test and in the rat neuropathic pain model”, Eur J Neurosci., 20(2): 483-94 (2004).

Yoo and Park, “Folate receptor targeted biodegradable polymeric doxorubicin micelles”, J Cont. Rel., 96: 273-83 (2004).

Zhou, et al., “Poly-D, L-lactide-co-poly(ethylene glycol) microspheres as potential vaccine delivery systems”, J Control Release, 86: 195-205 (2003).

Arbos, et al., “Quantification of the bioadhesive properties of protein-coated PVM/MA nanoparticies” International Journal of Pharmaceutics 2002, 242, 129-136.

Gomez, et al., “Grantez® AN nanoparticies as an adjuvant for oral immunotherapy with allergens” Vaccine 2007, 5263" 5271.

Hase and Ohno “Epithelial cells as sentinels in mucosal immune barrier” Jpn. J. Clin. Immunol. 2006, 29(1), 16-26.

Samuel, et al., 2004, Proceedings of the 2004 International Con­ference on MEMS, Nano and Smart Systems.

Watanabe and Tanabe “Approaches to produce functional foods possessing anti-allergic effects” Kagaku to Seibutsu (Chemistry and Biology) 2007, 45(3), 168-176 (English translation of Abstract and entire document in foreign language).

Yokoyama, “Nano-sized drug carriers: their present status and future perspective” Drug Delivery System 2006, 21-6.

Jpn. J. Clin. Immun., 1994, 17(6), 716-718 (English translation of Abstract and entire document in foreign language).

* cited by examiner



 

 


U. S. Patent Jan. 10, 2017 Sheet 1 of 53                                      US 9, 539, 210 B2



 

U. S. Patent


Jan. 10, 2017


Sheet 2 of 53


US 9, 539, 210 B2


 


 


FIG. 2B



 

U. S. Patent


Jan. 10, 2017


Sheet 3 of 53


US 9, 539, 210 B2


BCR downregulation


MFI (IgM) relative to nondraining LN


 


-»-B6


Minutes


CLL



 

U. S. Patent


Jan. 10, 2017


Sheet 4 of 53


US 9, 539, 210 B2


 


 


FIG. 3



 

U. S. Patent


Jan. 10, 2017


Sheet 5 of 53


US 9, 539, 210 B2


 


FIG. 4



 

U. S. Patent


Jan. 10, 2017


Sheet 6 of 53


US 9, 539, 210 B2


 


FIG. 5



 

U. S. Patent


Jan. 10, 2017


Sheet 7 of 53


US 9, 539, 210 B2


 


FIG. 6



 

U. S. Patent


Jan. 10, 2017


Sheet 8 of 53


US 9, 539, 210 B2


 


FIG. 7



 

U. S. Patent


Jan. 10, 2017


Sheet 9 of 53


US 9, 539, 210 B2


 


FIG. 8



 

U. S. Patent


Jan. 10, 2017


Sheet 10 of 53


US 9, 539, 210 B2


 


FIG. 9



 

U. S. Patent


Jan. 10, 2017


Sheet 11 of 53


US 9, 539, 210 B2


 


 


FIG. 10



 

uv-vsv

2nd harmonic signal


 


vsv


FIG. 11A


а


atent Jan. 10, 2017 Sheet 12 of 53                                      US 9, 5



о

W



 

U. S. Patent


Jan. 10, 2017


Sheet 13 of 53


US 9, 539, 210 B2


UV-VSV-IND
EGFP
2nd harmonic signal


 


FIG. 11В



 

U. S. Patent


Jan. 10, 2017


Sheet 14 of 53


US 9, 539, 210 B2


 



 

U. S. Patent Jan. 10, 2017


Sheet 15 of 53


US 9, 539, 210 B2


UV-VSV CD169 WGA (stroma)


 


FIG. 11D


 


FIG. 11E



 

FIG. 11H


VSV titer (log pfu/organ)


 



 

 


VSV titers (log pfu/organ)


 


U. S. Patent Jan. 10, 2017 Sheet 16 of 53                                    US 9, 539, 210 B2



 

 


VSV titer (log pfu/organ)


 


га oimv6 si


jo L\ Pays


Z, T0Z‘0T «Bf JUajEJ



 

isotope


 


о
ел



 


10°
lu CD169


104


о
(/)




J.


4. 83  
0. 00 1. 5

 


 


FIG. 12B


10°

lu CD11b


104

>


FIG. 12A


U. S. Patent Jan. 10, 2017 Sheet 18 of 53                                    US 9, 539, 210 B2


 


 

U. S. Patent


Jan. 10, 2017


Sheet 19 of 53


US 9, 539, 210 B2



c о


CO


 


F4/80 Gr-1 CD11ch'9h CD68


FIG. 12C



 

FIG. 12D


О co

Q О


FIG. 12Е


СП < 0 v Q О


В220                                                 В220

CD68                                                 CD11b



 

а


 


CD 169                      |CD11b


ж-


 


ij

I

* ч


CD169


f

CD68


atent Jan. 10, 2017 Sheet 20 of 53                                      US 9, 5



о

W

K>



 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.