Хелпикс

Главная

Контакты

Случайная статья





SUBJECT:_ Intravenous Cannulation



 

 

MINISTRY OF EDUCATION AND SCIENCE OF RUSSIAN FEDERATION

Federal State Autonomous Educational Institution of Higher Education

«V. I. VERNADSKY CRIMEAN FEDERAL UNIVERSITY»

Medical Academy named after S. I. Georgievsky (structural subdivision).

 

ABSTRACT

SUBJECT: _   Intravenous Cannulation

STUDENT __________VANSHUL RANA _____

faculty ____IMF-1____ course _____4_____ group ____LA-1-173(2)___

NAME OF PRACTICE: Акушерства, гинекологиии перинатологии №1_________________________________________________

SPECIALIZED ORGANIZATION ______Акушерства, гинекологиии перинатологии №1______________________________________

CITY (urban village): _________ SIMFEROPOL______________

DURATION OF PRACTICE: from_______21/06___________till __________02/07_________2021__

 

Simferopol, 2017

Introduction

A peripheral intravenous catheter is often inserted as part of care during labour. The catheter is inserted into the back of the hand or lower forearm vein in usual practice. There is no trial data to guide the care provider on which is the better insertion site in any clinical setting. 307 women admitted to the labour ward who required insertion of intravenous catheter were randomised to back of hand or lower forearm vein catheter insertion. Catheter insertion is by junior to mid-grade providers.

We evaluated insertion success at the first attempt, pain during insertion and catheter replacement due to malfunction as main outcomes. After catheter removal, we recorded patient satisfaction with site, future site preference and insertion site swelling, bruising, tenderness, vein thrombosis and pain. Insertion of a catheter into back of hand vein is more likely to be successful at the first attempt. Insertion pain score, catheter replacement rate, patient satisfaction, patient fidelity to site in a future insertion and insertion site complications rate are not different between trial arms. In conclusion, both insertion sites are suitable; the back of the hand vein maybe easier to cannulate and seems to be preferred by our frontline providers.

Intravenous catheterisation in women admitted to the delivery suite is common due to linked practical considerations: for blood sampling, in anticipation of frequently needed intravenous hydration, antibiotics or oxytocin during labor and as a precaution in the case of hemorrhage.

Clinical trials on peripheral intravenous catheterisation have focused on catheter longevity by evaluating timing of replacement1 and intermittent flushing or infusion with or without heparin to maintain patency2, 3, 4, inline filters to reduce phlebitis5, timing of giving set changes6, various pain relief methods during insertion7, 8, 9, 10, 11, 12, 13, 14, catheter dressings15 and even local warming to aid insertion16.
 
Despite the ubiquitous presence of the peripheral intravenous catheters in women on many delivery suites, the very few published trials in obstetric patients have focused on catheter patency17, 18. In obstetric patients anatomic considerations can be different as distal veins are engorged counterbalanced by peripheral oedema of late pregnancy and catheters are often needed for a short period only. In these patients, insertion success, insertion pain and short-term catheter functionality are more relevant.

Senior providers on our delivery suite encouraged catheter insertion at the forearm rather than dorsum of the hand vein based on the belief lower forearm insertion is just as likely to be successful19 and less painful, infusant flow is better as the vein is larger or the catheter tip is not blocked by wrist movement, the catheter is easier to secure and sits more comfortably and the anaesthetist is less likely to insert an additional catheter if anaesthesia is needed for an unplanned procedure. We performed a pilot study, then a powered trial to test our hypothesis on the impact of catheter site (dorsum of the hand vs. lower forearm) in delivery suite patients on insertion success, insertion pain and catheter replacement due to malfunction.



Main part

To help develop the trial protocol, we first conducted a pilot observation of 100 consecutive routine peripheral intravenous catheterisations in our delivery suite to gauge the insertion success rate at common insertion sites. Delivery suite providers were asked to document the site of their first catheter insertion attempt and whether it succeeded. There were 81 first attempts on dorsum of the hand vein and 19 on forearm (typically just proximal to the wrist) vein and insertion success rates were 72/81 (89%) and 14/19 (74%) respectively (Relative risk RR 1. 2 95% CI 0. 9–1. 6  P   =  0. 188). These initial findings demonstrated a marked tendency amongst junior providers to use dorsum of the hand vein in their routine practice, plausibly motivated by the perceived ease of catheter insertion there.

Our sample size was calculated based on a superiority hypothesis using our pilot data insertion success rates of 89% vs. 74% for dorsum of the hand vs. forearm veins respectively: taking alpha of 0. 05, power of 90% and 1 to 1 enrolment ratio, 139 participants were needed in each arm20. We added 10% to that base number to cater for potential drop-outs resulting in a final number of 152 participants needed in each arm (total 304). We assumed that a 1 point difference in insertion pain to be clinically relevant, with pain measured using a 10 point visual numerical rating scale (VNRS scored 1–10, high score more pain) and estimated the standard deviation of the pain VNRS to be 2. 5: applying these assumptions and taking alpha 0. 05, power at 90%, 1 to 1 enrolment ratio, using the Student t-test and adding a 10% margin for drop outs, 145 participants are needed in each arm (total 290)20.

The randomisation sequence is generated through random. org in random blocks of 8 or 12 by an author PCT who was not involved in enrolment. A total of 320 envelopes sequentially numbered were prepared (comprising 16 blocks of 8 and 12 each). These numbered envelopes were arranged in sequence and placed in a trial box kept on the main station of the delivery suite. The allocated instruction for dorsum of the hand or forearm vein insertion was placed in a smaller envelope concealed within the larger numbered sealed envelope which also contained the case report form, numerical rating scales and questionnaires. Randomisation is effected by the opening of the next numbered envelope remaining in the trial box. We believe there was no practical way to mask the trial interventions or in outcomes assessment.

Midwifery and medical providers who worked on the delivery suite and postnatal ward during trial enrolment were briefed and instructed at least weekly about the trial protocol. In our delivery suite, peripheral intravenous catheterisation is routinely performed by house officers or medical officers. House officers are new medical graduates undergoing a compulsory 2-year preregistration training program which includes an obligatory 4-month rotation in obstetrics and gynaecology. Our medical officers are fully registered doctors in our 4-year specialty training program. The provider (house officer or medical officer) who inserts the intravenous catheter was required to have a minimum of six months experience with peripheral intravenous catheterisation and permitted independent practice of the procedure. Women admitted to the delivery suite who according to our usual practice need to have a peripheral intravenous catheter inserted, were aged 18 years or older, at term gestation (> 36 weeks) with a singleton viable pregnancy and who had suitable veins at both the back of the hand and the lower forearm for catheter insertion were invited to participate. We exclude women who were judged unstable possibly requiring multiple venous accesses or considered to require immediate Caesarean delivery (our anaesthesia colleagues preferred the forearm site). The eligible woman was provided with the patient information sheet and counseled by the provider who obtained written informed consent from all who agreed to participate. Patient characteristics, indications for intravenous catheterisation and participants’ catheter site preference (before insertion) were collected.

In our delivery suite, the winged 18G (45 mm length) intravenous over-the-needle catheter with injection and main ports (Vasofix® Branule® B Braun Melsungen AG, Germany) was the standard catheter in use, usually inserted into the dorsum of the hand or lower forearm vein. This was the study catheter. Blood sampling through the catheter main port is only permitted at the time of insertion. Local anesthesia was not routine for the insertion of the 18G catheter.

Within the trial, the 18G catheter was inserted according to the provider’s usual technique after skin cleaning without local anesthesia [which can impact insertion success21 and its administration can also cause pain7]. The provider was instructed to insert in the non-dominant arm if a suitable vein was available and to avoid veins at the antecubital fossa or upper forearm where the catheter tip will extend to the elbow crease after insertion. Blood was withdrawn from the catheter main port if needed and a spigot applied, catheter secured with the standard transparent plaster dressing and the catheter flushed with 5 ml of normal saline. The provider then self-graded the insertion difficulty. After the first insertion attempt, whether successful or not, the participant was asked to rate the insertion associated pain using a VNRS (scored 1 to 10; high score more pain). We recorded any subsequent catheter replacement due to indwelling catheter malfunction (and its specific causes). The catheter insertion success rate, insertion pain score and catheter replacement rates were the a priori primary outcomes of this trial.

If the insertion failed, there was inability to aspirate blood from the main catheter port (if needed) despite manipulation to avoid venous valves or concern about correct placement during the saline flush, the catheter was removed and the attempt was classified as a failure. The provider may make further attempt at any site based solely on their judgment. We recorded the subsequent attempt site and also the eventual site of the first functioning intravenous catheter. We recorded the inserter’s job grade.

If the catheter was not use but still needed as a precaution after 24  hours, the catheter was flushed with 5  ml normal saline at least every 24  hours. We recorded if the catheter was used for administration of drug, fluid or blood and if additional catheter (defined as a second peripheral intravenous catheter insertion in the presence of a functioning catheter) was inserted with its indications. At removal of the last catheter (if more than one inserted), we asked the participant to rate with a VNRS (1 to 10, higher score greater satisfaction) their satisfaction with the original catheter site; a failed first attempt or subsequent catheter replacement was a priori rated the lowest score of 1. The original catheter site was inspected for the presence of swelling, bruising and vein thrombosis and palpated for tenderness. Participants were also asked on their preferred future intravenous catheterisation insertion site and to rate pain at the first insertion site with a VNRS (1 to 10, higher score more pain). These are the secondary outcomes.

Data were entered into SPSS 17 (SPSS Inc, Chicago, IL) for data analysis. We excluded those enrolled who infringed study criteria. Primary analysis was based on intention to treat. Analyses used the Student t test for comparison of means and variance, Mann Whitney U test for ordinal data or non-normally distributed data and Chi Square test for categorical datasets. Sub-analysis was also performed based on per protocol, as performed and as sited to facilitate a better understanding of the trial data and to generate hypotheses. Tests were two sided and P  <   0. 05 in any test was considered statistically significant.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.