|
|||
Уравнение равномерного прямолинейного движения точки. ⇐ ПредыдущаяСтр 2 из 2 Уравнение равномерного прямолинейного движения точки. Пусть радиус-вектор 0 задаёт положение точки в начальный момент времени t0, а радиус-вектор — в момент времени t. Тогда Δ t = t — t0, Δ = - 0, и выражение для скорости принимает вид: Если начальный момент времени t0 принять равным нулю, то Отсюда = 0 + t. (1) Последнее уравнение и есть уравнение равномерного прямолинейного движения точки, записанное в векторной форме. Оно позволяет найти радиус-вектор точки при этом движении в любой момент времени, если известны скорость точки и радиус-вектор, задающий её положение в начальный момент времени. Вместо векторного уравнения (1) можно записать три эквивалентных ему уравнения в проекциях на оси координат. Радиус-вектор является суммой двух векторов: радиус-вектора 0 и вектора t. Следовательно, проекции радиус-вектора на оси координат должны быть равны сумме проекций этих двух векторов на те же оси. Рассмотрим случай, когда направления 0 и совпадают. х = х0 + υ xt. (1. 1)
|
|||
|