Хелпикс

Главная

Контакты

Случайная статья





Лекция №9 2 страница



Предельно допустимый уровень фактора (ПДУ) - это тот максимальный уровень воздействия, который при постоянном действии в течение всего рабочего времени и трудового стажа не вызывает биологических изменений адаптационно-компенсаторных возможностей, психологических нарушений у человека и его потомства.

Условие безопасности при загрязнении веществами:

C ^ПДК,                                                                                    (3. 1)

где Ci - концентрация i-го вещества в жизненном пространстве,

ПДК! - предельно допустимая концентрация i-го вещества в жизненном пространстве.

Условие безопасности при загрязнении потоками энергии:

I * ПДУг,                                                                                    (3. 2)

где I - интенсивность i-го потока энергии в жизненном пространстве,

ПДУ! -предельно допустимый уровень i-го потока энергии в жизненном пространстве.

2. 3 Физические факторы (шум, вибрации, электромагнитные поля)

Различают ПДУ загрязнений, радиации, шумов, вибрации и т. д.

Допустимые уровни шума на рабочих местах регламентируются №2. 2. 4/2. 1. 8. 562-92. Шум в венткамере не должен превышать допустимых норм 100 дБ (А), в соответствии с ГОСТ 12. 1. 003-83, а в помещении - 65 дБ (А).

Таблица 3 - Допустимые значения шумовых характеристик

Уровни звукового давления в дБ в октавных полосах со среднегеометрическими частотами 31, 5
Уровни звука (ДбА)

 


 

Динамический диапазон звуков - от порога слышимости (0 дБ) до порога болевых ощущений (130 дБ).

Шум понижает работоспособность при умственном труде на 60 %, а при физическом примерно на 30 %.

Вызываемое шумом утомление ослабляет внимание и замедляет реакции человека, что приводит к увеличению брака и травматизму.

Наиболее чувствителен к шуму человеческий организм во время ночного отдыха, когда даже шум с уровнем в 30.. . 40 дБ может явиться серьезным беспокоящим фактором.

Санитарной нормой установлен безопасный для человека уровень звукового давления, равный 30 дБ.

Интенсивный шум воздействует в первую очередь на центральную нервную систему человека, что ведет к нарушению ее регуляторной функции, а это отрицательно сказывается на деятельности внутренних органов и кровообращения.

Под влиянием сильного шума (90. 100 дБ) притупляется острота зрения, появляются головные боли и головокружение, нарушаются ритм дыхания и пульс, повышается артериальное давление, сокращается выделение желудочного сока, снижается кислотность, что может привести к гипертонии, гастриту и другим болезням.

Постоянный шум становится причиной преждевременного старения и сокращения продолжительности жизни человека.

Вибрации - это механические колебания упругих тел или колебательные движения механических систем, передаваемые телу человека или отдельным его участкам.

Вибрация в основном, воздействует на внутренние органы человека, вызывая вибрационную болезнь. Основными параметрами звуковых колебаний является звуковое давление, интенсивность звука, частота, форма звуковой волны. Наименьшее значение звукового давления, воспринимаемое человеком на частоте 1 кГц равно 2 10-5 Па, называется пороговым значением.

Основными параметрами вибрации являются: частота и амплитуда колебания, вызывающие колебания тела человека при распространении вибрации по тканям организма, виброскорость и виброускорение.

Вибрация бывает общая и местная. Общая подразделяется на транспортную, технологическую, транспортно-технологическую. Санитарные нормы устанавливают предельно допустимые величины вибрации.

Средствами индивидуальной защиты являются наушники, беруши и др.

Наиболее эффективными являются средства, снижающие уровни шумов и вибраций в самом источнике, но это не всегда достижимо.

В производственных условиях нередко возникает опасность комбинированного влияния высокочастотного шума и низкочастотного ультразвука, например при работе реактивной техники, при плазменных технологиях.

Ультразвук как упругие волны не отличается от слышимого звука, однако, частота колебательного процесса способствует большему затуханию колебаний вследствие трансформации энергии в теплоту.

По частотному спектру ультразвук классифицируют на: низкочастотный - колебания 1, 12^104... 1, 0^ 105 Гц; высокочастотный - 1, 0^105. 1, 0^109 Гц; по способу распространения-на воздушный и контактный ультразвук.

В промышленных условиях для получения ультразвука используются установки, состоящие из генераторов высокочастотного переменного тока и магнитного преобразователя.

Ультразвук способен распространяться во всех средах: в газообразной, включая и воздух, жидкой и твердой. При применении ультразвука для производственных целей создаваемые его источником колебания чаще всего передаются через жидкую среду (при очистке, обезжиривании и т. п. ) или через твердую (при сверлении, резании, шлифовании и т. п. ). Однако и в том и в другом случае некоторая часть энергии, генерируемой. источником ультразвука, переходит в воздушную среду, в которой также возникают ультразвуковые колебания.

Оценивается ультразвук по двум основным его параметрам:

- частоте колебаний

- и уровню звукового давления.

Частота колебаний, так же как и шум и вибрация, измеряется в герцах или килогерцах (1 кгц равен 1000 гц). Интенсивность ультразвука, распространяемого в воздушной и газовой среде, так же как и шум, измеряется в децибелах.

Интенсивность ультразвука, распространяемого через жидкую или твердую среду, принято выражать в единицах мощности излучаемых магнитострикционным преобразователем колебаний на единицу облучаемой поверхности — ватт на квадратный сантиметр (вт/см ).

Ультразвуковые колебания непосредственно у источника их образования распространяются направленно, но уже на небольшом расстоянии от источника (25 — 50 см) эти колебания переходят в концентрические волны, заполняя все рабочее помещение ультразвуком и высокочастотным шумом.

При работе на ультразвуковых установках значительных мощностей рабочие предъявляют жалобы на головные боли, которые, как правило, исчезают по окончании работы; неприятный шум и писк в ушах (иногда до болезненных ощущений), которые сохраняются и после окончания работы; быструю утомляемость, нарушение сна (чаще сонливость днем), иногда ослабление зрения и чувство давления на глазное яблоко, плохой аппетит, сухость во рту и одеревенелость языка, боли в животе и др. При обследовании этих рабочих у них выявляются некоторые физиологические сдвиги во время работы, выражающиеся в небольшом повышении температуры тела (на 0, 5 — 1, 0оС) и кожи (на 1, 0 — 3, 0оС), сокращении частоты пульса (на 5 — 10 ударов в минуту), понижении кровяного давления — гипотонии (максимальное давление до 85 — 80 мм рт. ст., а минимальное — до 55— 50 мм рт. ст. ), несколько замедленных рефлексах и др. У рабочих с большим стажем иногда обнаруживаются отдельные отклонения со стороны здоровья, то есть клинические проявления: исхудание (потеря веса до 5— 8 кг), стойкое расстройство аппетита (отвращение к пище вплоть до тошноты или ненасытный голод), нарушение терморегуляции, притупление кожной чувствительности кистей рук, снижение слуха и зрения, расстройство функций желез внутренней секреции и др. Все эти проявления следует расценивать как результат совместного действия ультразвука и сопровождающего его высокочастотного шума. При этом контактное облучение ультразвуком вызывает более быстрые и ярко выраженные изменения в организме работающих, чем воздействие через воздушную среду. С увеличением стажа работы с ультразвуком нарастают и явления его неблагоприятного воздействия на организм. У лиц со стажем работы в этих условиях до 2 — 3 лет обычно редко выявляются какие-либо патологические изменения даже при интенсивных дозах воздействия ультразвука. Кроме

того, степень неблагоприятного воздействия ультразвука зависит от его интенсивности и продолжительности облучения, как разовой, так и суммарной за рабочую смену.

Источниками электромагнитных полей (ЭМП) являются: атмосферное электричество, радиоизлучения, электрические и магнитные поля Земли, искусственные источники (установки ТВЧ, радиовещание и телевидение, радиолокация, радионавигация и др. ). Источниками излучения электромагнитной энергии являются мощные телевизионные и радиовещательные станции, промышленные установки высокочастотного нагрева, а также многие измерительные, лабораторные приборы. Источниками излучения могут быть любые элементы, включенные в высокочастотную цепь.

Токи высокой частоты применяют для плавления металлов, термической обработки металлов, диэлектриков и полупроводников и для многих других целей. Для научных исследований в медицине применяют токи ультравысокой частоты, в радиотехнике - токи ультравысокой и сверхвысокой частоты. Возникающие при использовании токов высокой частоты электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм. Токи высокой частоты создают в воздухе излучения, имеющие ту же электромагнитную природу, что и инфракрасное, видимое, рентгеновское и гамма-излучение.

Различие между этими видами энергии - в длине волны и частоте колебаний, а значит, и в величине энергии кванта, составляющего электромагнитное поле.

Электромагнитные волны, возникающие при колебании электрических зарядов (при прохождении переменных токов), называются радиоволнами. Интенсивность электромагнитного поля в какой-либо точке пространства зависит от мощности генаратора и расстояния от него. На характер распределения поля в помещении влияет наличие металлических предметов и конструкций, которые являются проводниками, а также диэлектриков, находящихся в ЭМП.

Электромагнитные излучения радиочастотных установок, воздействуя на организм человека в дозах, превышающих допустимые, могут явиться причиной профессиональных заболеваний.

Действие электромагнитных полей на организм человека проявляется в функциональном расстройстве центральной нервной системы; субъективные ощущения при этом -повышенная утомляемость, головные боли и т. п. Первичным проявлением действия электромагнитной энергии является нагрев, который может привести к изменениям и даже к повреждениям тканей и органов. Механизм поглощения энергии достаточно сложен. Возможны также перегрев организма, изменение частоты пульса, сосудистых реакций. Поля сверхвысоких частот могут оказывать воздействие на глаза, приводящее к возникновению катаракты (помутнению хрусталика). Многократные повторные облучения малой интенсивности могут приводить к стойким функциональным расстройствам центральной нервной системы. Степень биологического воздействия электромагнитных полей на организм человека зависит от частоты колебаний, напряженности и интенсивности поля, длительности его воздействия. Биологическое воздействие полей разных диапазонов неодинаково. Изменения, возникающие в организме под воздействием электромагнитных полей, чаще всего обратимы.

В результате длительного пребывания в зоне действия электромагнитных полей наступают преждевременная утомляемость, сонливость или нарушение сна, появляются частые головные боли, наступает расстройство нервной системы и др. При систематическом облучении наблюдаются стойкие нервно-психические заболевания, изменение кровяного давления, замедление пульса. Аналогичное воздействие на организм человека оказывает электромагнитное поле промышленной частоты в электроустановках сверхвысокого напряжения. Интенсивные электромагнитные поля вызывают у работающих нарушение функционального состояния центральной нервной системы, сердечно-сосудистой системы и периферической крови. При этом наблюдаются повышенная утомляемость, вялость, снижение точности рабочих движений, изменение

кровяного давления и пульса, возникновение болей в сердце (обычно сопровождается аритмией), головные боли.

Основные меры защиты от воздействия электромагнитных излучений: уменьшение излучения непосредственно у источника (достигается увеличением расстояния между источником направленного действия и рабочим местом, уменьшением мощности излучения генератора); рациональное размещение СВЧ и УВЧ установок (действующие установки мощностью более 10 Вт следует размещать в помещениях с капитальными стенами и перекрытиями, покрытыми радиопоглощающими материалами-кирпичом, шлакобетоном, а также материалами, обладающими отражающей способностью- масляными красками и др. ); дистанционный контроль и управление передатчиками в экранированном помещении (для визуального наблюдения за передатчиками оборудуются смотровые окна, защищенные металлической сеткой); экранирование источников излучения и рабочих мест (применение отражающих заземленных экранов в виде листа или сетки из металла, обладающего высокой электропроводностью- алюминия, меди, латуни, стали); организационные меры (проведение дозиметрического контроля интенсивности электромагнитных излучений - не реже одного раза в 6 месяцев; медосмотр - не реже одного раза в год; дополнительный отпуск, сокращенный рабочий день, допуск лиц не моложе 18 лет и не имеющих заболеваний центральной нервной системы, сердца, глаз); применение средств индивидуальной защиты (спецодежда, защитные очки и др. ).

Экранирование - наиболее эффективный способ защиты. Электромагнитное поле ослабляется экраном вследствие создания в толще его поля противоположного направления. Степень ослабления электромагнитного поля зависит от глубины проникновения высокочастотного тока в толщу экрана. Чем больше магнитная проницаемость экрана и выше частота экранируемого поля, тем меньше глубина проникновения и необходимая толщина экрана. Экранируют либо источник излучений, либо рабочее место. Экраны бывают отражающие и поглощающие. Для защиты работающих от электромагнитных излучений применяют заземленные экраны, кожухи, защитные козырьки, устанавливаемые на пути излучения. Средства защиты (экраны, кожухи) из радиопоглощающих материалов выполняют в виде тонких резиновых ковриков, гибких или жестких листов поролона, ферромагнитных пластин.

Вопросы для самоконтроля

1. Взаимодействие в системе «человек - среда обитания» каким условиям соответствует?

2. Какие негативные факторы каждый день встречающиеся в быту Вы знаете?

3. Как подразделяются опасные и вредные производственные факторы по природе действия?

4. Что понимается под ПДК?

5. Что понимается под ПДУ?

6. Какие Вы знаете физические опасные и вредные производственные факторы?

7. Как подразделяются химические опасные производственные факторы?

8. Как подразделяются психофизиологические опасные производственные факторы?

9. Какое воздействие шум оказывает на организм человека?

10. Понятие вибрации.

11. Что является источником электромагнитных полей?

 

Лекция 3

ЗАЩИТА ЧЕЛОВЕКА И СРЕДЫ ОБИТАНИЯ ОТ НЕГАТИВНЫХ ПРОИЗВОДСТВЕННЫХ ФАКТОРОВ

Принципы (методы) защиты от опасностей

Научные знания в БЖД опираются на перечисленные несколько принципов.

Первый принцип - принцип антропоцентризма: «человек есть высшая ценность, сохранение и продление жизни которого является целью его существования.

Второй принцип - принцип существования внешних воздействий на человека: «Человеческий организм всегда может подвергнутъся внешнему воздействию со стороны какого - либо фактора».

Кратко применительно к БЖД это обычно формулируют проще: «жизнь потенциально опасна», полагая, что в БЖД анализируются только опасные воздействия.

Третий принцип - принцип возможности создания для человека среды обитания «Создание комфортной и безопасной для человека среды обитания принципиально возможно и достижимо при соблюдении предельно допустимых уровней воздействий на человека».

Четвертый принцип - принцип реализации безопасного взаимодействия человека со средой обитания: «Безопасное взаимодействие человека со средой обитания достигается его адаптацией к опасностям, снижением их значимости и применением человеком защитных мер».

Пятый принцип — принцип отрицания абсолютной безопасности: «Абсолютная безопасность человека в среде обитания не достижима»

Шестой принцип - принцип роста защищенности жизни человека будущего: рост знаний человека, совершенствование техники и технологии, применение мер защиты, ослабление социальной напряженности в будущем неизбежно приведут к повышению защищенности человека от опасностей. Этот принцип сформулирован, опираясь на принцип Ле - Шателье: «Эволюция любой системы идет в направлении снижения потенциальной опасности» [3].

Анализ реальных ситуаций, событий и факторов уже сегодня позволяет сформулировать ряд аксиом науки о безопасности жизнедеятельности в техносфере.

К ним относятся:

Аксиома 1. Техногенные опасности существуют, если повседневные потоки вещества, энергии и информации в техносфере превышают пороговые значения.

Аксиома 2. Источниками техногенных опасностей являются элементы техносферы.

Аксиома 3. Техногенные опасности действуют в пространстве и во времени.

Аксиома 4. Техногенные опасности оказывают негативное воздействие на человека, природную среду и элементы техносферы одновременно.

Аксиома 5. Техногенные опасности ухудшают здоровье людей, приводят к травмам, материальным потерям и к деградации природной среды.

Аксиома 6. Защита от техногенных опасностей достигается совершенствованием источников опасности, увеличением расстояния между источником опасности и объектом защиты, применением защитных мер.

Аксиома 7. Показатели комфортности процесса жизнедеятельности взаимосвязаны с видами деятельности и отдыха человека.

Аксиома 8. Компетентность людей в мире опасностей и способах защиты от них - необходимое условие достижения безопасности жизнедеятельности.

Широкая и все нарастающая гамма техногенных опасностей, отсутствие естественных механизмов защиты от них требуют приобретения человеком навыков обнаружения

опасностей и применения средств защиты. Это достижимо только в результате обучения и приобретения опыта на всех этапах образования и практической деятельности человека.

Возможные варианты взаимного положения зон опасности и зоны пребывания человека:

• безопасная ситуация;

• ситуация кратковременной или локальной опасности;

• опасная ситуация;

• условно безопасная ситуация.

Реализация 2... 4 ситуаций всегда требует применения средств защиты от опасностей в системе «источник опасности - человек».

Сформировались следующие группы принципов обеспечения безопасности по признаку реализации их:

• организационные;

• ориентирующие;

• технические;

• управленческие.

Организационные принципы определяют направления поиска безопасных

решений: принцип системности, деструкции, снижения опасности, ликвидации опасности.

Ориентирующие принципы. На них базируется научная организация труда. К ним относят принцип защиты временем, защиты расстоянием, принцип компенсации и др.

К техническим принципам относят принцип слабого звена, принцип экранирования, принцип блокировки.

К управленческим принципам относят принцип обратной связи, принцип управления.

В целом все принципы сводятся к следующему:

• совершенствование источников опасности с целью максимального снижения значимости генерируемых ими опасностей. Это не только снижает уровни опасности, но и, как правило, сокращает размеры опасной зоны;

• применение защитных средств (экобиозащитная техника) для изоляции зоны пребывания человека от негативных воздействий, в том числе и применение средств индивидуальной защиты человека от опасностей.

Кроме реализации организационных и технических видов защиты, существенное значение в процессе реализации защитных мероприятий имеют знания и умения работающих и населения в области безопасности жизнедеятельности, уровень их подготовки и адаптации к действиям в опасных и чрезвычайно опасных ситуациях.

Существует четыре группы методов обеспечения безопасности: метод А - пространственное и временное разделение гомо- и ноксосферы (2); метод Б - применение средств безопасности к гомосфере; метод В - применение средств безопасности к ноксосфере; метод Г - любая комбинация методов А - В.

Совершенствование источников опасности с целью сокращения опасных зон.

При воздействии вредных факторов сокращение размеров зон должно достигаться прежде всего совершенствованием технических систем, приводящих к уменьшению выделяемых ими отходов.

Защита от механического травмирования

Для защиты от механического травмирования применяют два основных способа:

1) обеспечение недоступности человека в опасные зоны;

2) применение устройств, защищающих человека от опасного фактора.

Средства защиты от механического травмирования подразделяются на:

1) коллективные (СКЗ); 2) индивидуальные (СИЗ).

2) СКЗ делятся на:

-оградительные;

- предохранительные;

- тормозные устройства;

- устройства автоматического контроля и сигнализации;

-дистанционного управления;

- знаки безопасности.

Оградительные устройства.

Предназначены для предотвращения случайного попадания человека в опасную зону. Их применяют для изоляции движущихся частей машин, зон обработки станков, прессов, ударных элементов машин и т. д. от рабочей зоны.

Они могут быть: 1) стационарными; 2) подвижными; 3) переносными Их выполняют в виде защитных кожухов, дверей, козырьков, барьеров, экранов. Оградительные устройства изготавливают из металла, пластмасс, дерева и могут быть как сплошными, так и сетчатыми.

Рабочая часть режущих инструментов (пил, фрез, ножевых головок и т. д. ) должна закрываться автоматически действующим ограждением, открывающимся во время прохождения обрабатываемого материала или инструмента только для его пропуска.

Ограждения должны быть достаточно прочными, чтобы выдерживать нагрузки от отлетающих частиц обрабатываемого материала, разрушающегося обрабатывающего инструмента, от срыва обрабатываемой детали и т. д.

Переносные ограждения используют как временные при ремонтных и наладочных работах.

Предохранительные устройства предназначены для автоматического отключения машин и оборудования при отклонении от нормального режима работы или при попадании человека в опасную зону.

Их подразделяют на:

- блокирующие;

- ограничительные.

Блокирующие устройства исключают возможность проникновения человека в опасную зону.

По принципу действия они могут быть:

- механические;

- электромеханические;

- электромагнитные (радиочастотные);

- фотоэлектрические;

-радиационные;

-пневматические;

- ультразвуковые и др.

Широко распространена фотоэлектрическая блокировка, основанная на принципе преобразования в электрический сигнал светового потока, падающего на фотоэлемент. Опасную зону ограждают световыми лучами. Пересечение человеком светового луча вызывает изменение фототока и приводит в действие механизмы защиты или отключения установки. Используется на турникетах метро.

Радиационная блокировка основана на применении радиоактивных изотопов. Ионизирующие излучения, направленные от источника, улавливаются измерительно - командным устройством, которое управляет работой реле. При пересечении луча измерительно - командное устройство подает сигнал на реле, которое разрывает электрический контакт и отключает оборудование.

Ограничительные устройства.

Это элементы механизмов и машин, рассчитанные на разрушение (или несрабатывание) при перегрузках.

К таким элементам относятся:

* срезные штифты и шпонки, соединяющие вал с приводом;

* фрикционные муфты, не передающие движения при больших крутящих моментах и т. п. Их делят на две группы:

* элементы с автоматическим восстановлением кинематической цепи после того, как контролируемый параметр пришел в норму (например, фрикционные муфты);

* элементы с восстановлением кинематической связи путем её замены (например, штифты и шпонки).

Тормозные устройства.

По конструктивному исполнению их подразделяют на:

* колодочные;

* дисковые;

* конические;

* клиновые.

Чаще всего используют колодочные и дисковые тормоза.

Примером таких тормозов могут являться тормоза автомобилей.

Устройства автоматического контроля и сигнализации

Устройства контроля - это приборы для измерения давлений, температуры, статических и динамических нагрузок и других параметров, характеризующих работу оборудования и машин.

Эффективность их использования значительно повышается при объединении с системами сигнализации.

Устройства автоматического контроля и сигнализации подразделяют: по назначению:

* информационные;

* предупреждающие;

* аварийные;

по способу срабатывания:

* автоматические;

* полуавтоматические.

Электробезопасность

Современный уровень технического прогресса невозможен без широкого внедрения электрооборудования, что в свою очередь вызывает необходимость постоянного совершенствования требований к его безопасному обслуживанию и средств защиты. Работа в области электробезопасности должна основываться на продуманной, четкой, конкретной системе мероприятий, обеспечивающей полное и точное выполнение «Правил технической эксплуатации электроустановок потребителей» и «Правил техники безопасности при эксплуатации электроустановок потребителей».

Большое число несчастных случаев бывает при обслуживании и ремонтах электропривода, пускорегулирующей аппаратуры, электрического освещения, сварочных аппаратов, электрифицированного транспорта, электрооборудования, подьемно- транспортных механизмов, ручного переносного инструмента, а также высокочастотных установок.

Электроустановки по напряжению разделяются на две группы: напряжением до 1000 В и свыше 1000 В. Практика свидетельствует, что электротравмы, как уже было сказано выше, чаще случаются в электроустановках с напряжением до 1000 В.

Большая часть несчастных случаев происходит из-за низкого уровня организации работ, грубых нарушений Правил, в том числе:

- Непосредственного прикосновения к открытым токоведущим частям и проводам.

- Прикосновения к токоведущим частям, изоляция которых повреждена.

- Прикосновения к металлическим частям оборудования, случайно оказавшихся под напряжением.

- Отсутствия или нарушения защитного заземления.

- Ошибочной подачи напряжения во время ремонтов или осмотров.

- Воздействия электрического тока через дугу.

- Воздействия шагового напряжения и др.

Таблица 4 - Характеристика воздействия на человека электрического тока различной

силы

Сила тока, мА переменный ток 50 — 60 Гц постоянный ток
0, 6 — 1, 5 Легкое дрожание пальцев рук Не ощущается
2 — 3 Сильное дрожание пальцев рук Не ощущается
5 — 7 Судороги в руках 3уд. Ощущение нагревания
8 — 10 Руки с трудом, но еще можно оторвать от электродов. Сильные боли в руках, особенно в кистях и пальцах Усиление нагревания
20 — 25 Руки парализуются немедленно, оторвать их от электродов невозможно. Очень сильные боли. Затрудняется дыхание Еще большее усиление нагревания, незначительное сокращение мышц рук
50 — 80 Паралич дыхания. Начало трепетания желудочков сердца Сильное ощущение нагревания. Сокращение мышц рук. Судороги. Затруднение дыхания
90 — 100 Паралич дыхания и сердца при воздействии более 0, 1 с. Паралич дыхания

 


 

Электрический удар ведет к возбуждению живых тканей; В зависимости от патологических процессов, вызываемых поражением электротоком, принята следующая классификация тяжести электротравм при электрическом ударе:

- электротравма I степени — судорожное сокращение мышц без потери сознания;

- электротравма II степени — судорожное сокращение мышц с потерей сознания;

- электротравма III степени — потеря сознания и нарушение функций сердечной деятельности или дыхания (не исключено и то и другое);

- электротравма IV степени — клиническая смерть.

Степень тяжести электрического поражения зависит от многих факторов: сопротивления организма, величины, продолжительности действия, рода и частоты тока, пути его в организме, условий внешней среды.

Исход электропоражения зависит и от физического состояния человека. Если он болен, утомлен или находится в состоянии опьянения, душевной подавленности, то действие тока особенно опасно. Безопасными для человека считаются переменный ток до 10 мА и постоянный — до 50 мА.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.