|
|||
Тема: Ірраціональні рівняння, системи та засоби їх розв’язанняСтр 1 из 3Следующая ⇒ Тема: Ірраціональні рівняння, системи та засоби їх розв’язання О: Уравнение, в котором неизвестное содержится под знаком радикала, называется иррациональным Способы решения иррациональных уравнений: А) возведение обеих частей уравнения в одну и ту же степень с обязательной проверкой из-за появления посторонних корней с исследованием ОДЗ – области допустимых значений для исключения посторонних корней 1) При п – четном п – нечетном или 2) при Б) введение новой переменной (способ замены) В) метод равносильных преобразований – умножение или деление на одно и то же число - перенос членов уравнения из одной части уравнения в другую с изменением знака - прибавление к обеим частям уравнения одного и того же числа
Иногда, не решая иррациональные уравнения, можно выяснить имеет оно корень или нет. № 72 Не решая, объяснить – почему в уравнении нет корней: 1) - арифметический квадратный корень неотрицательный 2) - в левой части – сумма арифметических квадратных корней, а в правой – отрицательное число – невозможно.
1) ОДЗ: 8-х≥0, х≤8, хÎ(-∞;8]
Проверка равенство верное - корень равенство неверное - посторонний корень Ответ:
2) ОДЗ: 4x+8≥0 4x ≥-8 x≥-2 3х-2≥0 3х ≥ 2 х≥2/3 хÎ[2/3;∞)
Проверка: равенство неверное - посторонний корень равенство неверное - посторонний корень
|
|||
|