Хелпикс

Главная

Контакты

Случайная статья





Искомая вероятность р = 1— q = 1—0,2 = 0,8.



#79

Даны три попарно независимых события A, B, C, которые, однако, все три вместе произойти не могут. Предполагая, что все они имеют одну и ту же вероятность p, найти наибольшее возможное значение p.

Решение.

Так как события попарно независимы и , также верно .

Обозначим . Выразим  через , пользуясь теоремой сложения для трёх несовместных событий:

.

Решив это уравнение относительно , получим .

В таком случае  достигает максимального значения  (при ).

Если , то, на первый взгляд, . Покажем, что допущение  приводит к противоречию. Действительно,  при условии, что ; или, так как , при условии, что . Отсюда .

Итак, наибольшее возможное значение .

#80

Вероятность отказа первого элемента равна 0,1,второго -

0,15,третьего – 0,2

То есть =0,1, =0,15, =0,2

          =0,9, =0,85, =0,8

Тока в цепи не будет, если откажет хотя бы один элемент

То есть нужно использовать формулу появления хотя бы одного события (P(A)=1- *…* )

Значит, искомая вероятность равна 0,388

(P(A)=1- * * =1-(0,9*0,85*0,8)=0,388)

Ответ:0,388

 

#81

Устройство содержит два независимо работающих элемента. Вероятности отказа элементов соответственно равны 0,05 и 0,08. Найти вероятность отказа устройства, если для этого достаточно, чтобы отказал хотя бы один элемент.

Решение: Вероятность того, что откажет 1й элемент, 2й элемент или оба, обратна вероятности того, что ни один не откажет, т.е.:

Ответ: 0,126.

 

#82

Для разрушения моста достаточно попадания одной авиационной бомбы. Найти вероятность того, что мост будет разрушен, если на него сбросить четыре бомбы, вероятности попадания которых соответственно равны: 0,3; 0,4; 0,6; 0,7.

Решение: При последовательном сбрасывании четырех бомб мост будет разрушен (событие А), если в него попадет хотя бы одна бомба. Следовательно, искомая вероятность равна:

Ответ: 0,9496.

#83

Три исследователя, независимо один от другого, производят измерения некоторой физической величины. Вероятность того, что первый исследователь допустит ошибку при считывании показаний прибора, равна 0,1. Для второго и третьего исследователей эта вероятность соответственно равна 0,15 и 0,2. Найти вероятность того, что при однократном измерении хотя бы один из исследователей допустит ошибку.

Решение.

 Вероятность того, что при однократном измерении хотя бы один из исследователей допустит ошибку равна:

Р(А) = 1 - q1q2q3 = 1 –(1 – 0,1)*(1 – 0,15)*(1 – 0,2) = 0,388.

 

#84

Вероятность успешного выполнения упражнения

для каждого из двух спортсменов равна 0,5. Спортсмены

выполняют упражнение по очереди, причем каждый делает

по две попытки. Выполнивший упражнение первым полу-

получает приз. Найти вероятность получения приза спорт-

спортсменами.

 

 

Решение. Для вручения приза достаточно, чтобы хотя бы

одна из четырех попыток была успешной. Вероятность успешной

попытки р = 0,5, а неуспешной q=1 - 0,5 = 0,5. Искомая вероятность

Р = 1 - q^4 = 1 —0,5^4 =0,9375.

 

 

#85

Вероятность попадания в мишень каждым из двух стрелков равна 0,3. Стрелки стреляют по очереди, причем каждый должен сделать по два выстрела. Попавший в мишень первым получает приз. Найти вероятность того, что стрелки получат приз.

Решение. Для получения приза достаточно, чтобы хотя бы одна из четырех попыток была успешна. Вероятность успешной попытки p=0,3 , неуспешной q=1-p=0,7. Тогда искомая вероятность будет равна P=1-q*q*q*q=1- ≈0,76

 

#86

 Вероятность хотя бы одного попадания стрелком в мишень при трех выстрелах равна 0,875. Найти вероятность попадания при одном выстреле.

Решение:

Вероятность попадания в мишень хотя бы при одном из трех выстрелов (событие А) равна

Р(А)=1-q3, где q — вероятность промаха. По условию, P (A) = 0,875. Следовательно,

0,875=1—q3, или q3 = 1—0,875 = 0,125.

Отсюда q= =0,5.

 Искомая вероятность р = 1— q = 1—0,5 = 0,5.

#87

Вероятность хотя бы одного попадания в цель при четырех выстрелах равна 0,9984. Найти вероятность попадания в цель при одном выстреле.

Решение:

Вероятность попадания в мишень хотя бы при одном из трех выстрелов (событие А) равна

Р(А)=1-q4, где q — вероятность промаха. По условию, P (A) = 0,9984. Следовательно,

0,9984=1—q4, или q4 = 1—0,9984= 0,0016.

Отсюда q= =0,2.

 Искомая вероятность р = 1— q = 1—0,2 = 0,8.

 

#88

Условие:

Многократно измеряют некоторую физическую величину. Вероятность того, что при считывании показаний прибора допущена ошибка, равна . Найти наименьшее число измерений, которое необходимо произвести, чтобы с вероятностью  можно было ожидать, что хотя бы один результат измерений окажется неверным.

 

Решение:

Вероятность хотя бы одной ошибки из  считываний равна , где , и - вероятность ошибки при одном считывании. Из условия  получим:

;    ;     ;

Следовательно, искомое число измерений равно , где  – целая часть числа

 

#89

В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется

белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).

 

Решение:

Обозначим через А событие - извлечен белый шар. Возможны следующие предположения о первоначальном составе шаров: В1 - белых шаров нет, В2 - один белый шар, В3 - два белых шара.

Поскольку всего имеется три гипотезы, причем по условию они равновероятны, и сумма вероятностей гипотез равна единице (так как они образуют полную группу событий), то вероятность каждой из гипотез равна 1/3, т. е. P(B1) = P(B2) = P(B3) =

Вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне не было белых шаров, . Если в урне был один белый шар, то . Условная вероятность того, что будет извлечен белый шар, при условии, что в урне было два белых шара

Искомую вероятность того, что будет извлечен белый шар, находим по формуле полной вероятности:

Ответ: P(A)=

#90

В урну, содержащую n шаров, опущен белый шар, после наудачу извлечен один шар. Найти вероятность того что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров по цвету.

Решение:

Обозначим через А событие - извлечен белый шар. Возможны следующие предположения о первоначальном составе шаров: В1- 1 белый шар, В2- 2 белых шара... Вn-n белых шаров. Поскольку всего имеется n гипотез, причем по условию они равновозможны и сумма вероятностей равна единице, то вероятность каждой гипотезы равна . По гипотезе В1 условная вероятность вытащить белый шар равна , по гипотезе В2 условная вероятность вытащить белый шар равна … по гипотезе Вn условная вероятность вытащить белый шар равна .

Искомую вероятность того, что будет извлечен белый шар, находим по формуле полной вероятности:

 

#91

 

Условие задачи:

В вычислительной лаборатории имеется шесть клавишных автоматов и четыре полуавтомата. Вероятность того, что за время выполнения некоторого расчета автомат не выйдет из строя, равна ; для полуавтомата эта вероятность равна . Студент производит расчет на наудачу выбранной машине. Найти вероятность того, что до окончания расчета машина не выйдет из строя.

 

Решение задачи:

Обозначим через  событие – произведен расчет на наудачу выбранной машине. Возможны следующие гипотезы в данном эксперименте:  - расчет производится на клавишном автомате,  - расчет производится на полуавтомате.

Так как имеется 6 клавишных автоматов и 4 полуавтомата, то вероятность того, что произойдет гипотеза , равна . А вероятность того, что произойдет гипотеза , равна .

Условная вероятность того, что клавишный автомат не выйдет из строя, равна , т.е  . А условная вероятность того, что полуавтомат не выйдет из строя, равна , т.е .

Искомая вероятность того, что до окончания эксперимента машина не выйдет из строя, находим по формуле полной вероятности:

 

Ответ: P(A)=0,89

 

#92

В пирамиде пять винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.

 

Решение

Рассмотрим события:

A – стрелок поразит мишень

В1 – взятая наудачу винтовка снабжена оптическим прицелом

В2 – взятая наудачу винтовка без оптического прицела

Следовательно, по условию, вероятность события А при условии события В1: , а вероятность события А при условии события В2: .

В свою очередь вероятность события В1: , т.к. всего винтовок 5, а благоприятствуют событию 3 винтовки. Аналогично .

Пользуясь формулой полной вероятности , получим:

                                                                             Ответ: 0,85

#93

Задание: В ящике содержится 12 деталей, изготовленных на заводе № 1, 20 деталей —на заводе № 2 и 18 деталей— на заводе № 3. Вероятность того, что деталь, изготовленная на заводе № 1, отличного качества, равна 0,9; для деталей, изготовленных на заводах N° 2 и № 3, эти вероятности соответственно равны 0.6 и 0,9. Найти вероятность того, что извлеченная наудачу деталь окажется отличного качества.

Решение: Обозначим через A событие – извлечена деталь отличного качества. Возможно три варианта гипотезы:  – извлечена деталь отличного качества, изготовленная заводе №1;  – извлечена деталь отличного качества, изготовленная заводе №2;  – извлечена деталь отличного качества, изготовленная заводе №3. По условию . Найдём вероятности того, что извлечённая деталь изготовлена на заводе №1, №2, №3.

где  - общее число изготовленных на 3-х заводах деталей,  – количество деталей изготовленных, соответственно, на заводах №1, 2, 3.

Искомая вероятность вероятность того, что извлеченная наудачу деталь окажется отличного качества находится по формуле полной вероятности:

 

 

 

#94

В первой урне содержится 10 шаров, из них 8 белых; во второй урне 20 шаров, из них 4 белых. Из каждой урны наудачу извлекли по одному шару, а затем из этих двух шаров наудачу взят один шар. Найти вероятность того, что взят белый шар.

Решение:

Обозначим через  событие – извлечён белый шар. Возможны следующие гипотезы:

- белый шар взят из первой урны, - белый шар взят из второй урны.

Поскольку всего имеется две гипотезы, причём по условию они равновероятны, и сумма вероятностей гипотез равна единице(т.к. они образуют полную группу событий), то вероятность каждой из гипотез равна , т.е. .

Условная вероятность того, что белый шар будет извлечён из первой урны равна: =

Условная вероятность того, что белый шар будет извлечён из второй урны равна: =

По формуле полной вероятности находим:

 

#95

В каждой из трех урн содержится 6 черных 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую урну, после чего из второй урны наудачу извлечен один шар и переложен в третью урну. Найти вероятность того, что шар, наудачу извлеченный из третьей урны, окажется белым.

Решение.

A1 – вероятность того, что из первой урны извлечен белый шар.

A2 – вероятность того, что из первой урны извлечен черный шар.

P(A1)=4/10              P(A2)=6/10

B1 – вероятность того, что из второй урны извлечен белый шар, после того как из первой урны переложили во вторую урну белый шар.

B2 – вероятность того, что из второй урны извлечен белый шар, после того как из первой урны переложили во вторую урну черный шар.

P(B1)=5/11              P(B2)=4/11

C1 – вероятность того, что из второй корзины будет извлечен белый шар.

C2 – вероятность того, что из второй корзины будет извлечен черный шар.

P(C1)=P(A1)*P(B1)+P(A2)*P(B2) P(C1)=4/10*5/11+6/10*4/11=2/5

P(C2)=1-P(C1)                                                                  P(C2)=1-2/5=3/5

D1 – вероятность того, что из третьей урны извлечен белый шар, после того как из второй урны переложили в втретью урну белый шар.

D2 – вероятность того, что из третьей урны извлечен белый шар, после того как из второй урны переложили в втретью урну черный шар.

P(D1)=5/11              P(D2)=4/11

E – вероятность того, что из третьей урны будет извлечен белый шар.

P(E)= P(D1)*P(C1)+P(D2)*P(C2) P(E)=5/11*2/5+4/11*3/5=2/5

Ответ: 2/5.

 

#96

Вероятности того, что во время работы цифровой электронной машины произойдет сбой в арифметическом устройстве, в оперативной памяти, в остальных устройствах,

относятся как 3:2:5. Вероятности обнаружения сбоя в арифметическом устройстве, в оперативной памяти и в остальных устройствах соответственно равны 0,8; 0,9; 0,9. Найти вероятность того, что возникший в машине сбой будет обнаружен.

 

Решение: Пусть А – событие того, что сбой будет обнаружен, тогда из формулы полной вероятности следует, что:

              PA= PB1PB1A+PB2PB2A+PB3PB3A= 0,3*0,8+0,2*0,9+0,5*0,9=0,87.

 

#97

Обозначим через А событие – деталь отличного качества

Можно сделать два предположения

-деталь произведена первым автоматом (так как производительность первого автомата вдвое больше второго автомата, то Р( )=2/3)

-деталь произведена вторым автоматом (Р( )=1/3)

Условная вероятность, что она будет отличного качества, если она произведена первым автоматом (A)=0,6

Условная вероятность, что она будет отличного качества, если она произведена первым автоматом (A)=0,84

Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности равна

P(A)=Р( )* (A)+ Р( )* (A)=2/3*0.6+1/3*0.84=0.68

Вероятность того, что взятая отличная деталь произведена первым автоматом, по формуле Бейеса равна

( )= = =

Ответ:

 

 

#98

В пирамиде 10 винтовок, из которых 4 снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,8. Стрелок поразил мишень из наудачу взятой винтовки. Что вероятнее: стрелок стрелял из винтовки с оптическим прицелом или без него?

Решение: Обозначим событие А – стрелок поразил мишень и гипотезы: B1 – стрелок выбрал винтовку с оптическим прицелом, B2 – без оптического прицела. Тогда . Условные вероятности попадания из винтовки с оптическим прицелом и без: . Вычислим вероятность попадания из наудачу взятой винтовки:

Теперь, воспользовавшись формулой Бейеса, получим ответ:

Ответ: Стрелок вероятнее всего стрелял из винтовки без оптического прицела.

 

#99

Число грузовых автомашин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых машин, проезжающих по тому же шоссе как 3:2. Вероятность того, что будет заправляться грузовая машина, равна 0,1; для легковой машины эта вероятность равна 0,2. К бензоколонке подъехала для заправки машина. Найти вероятность того, что это грузовая машина.

Решение: Обозначим через А событие—подъезд автомобиля к заправке. Можно сделать два предположения: —проехал грузовой автомобиль, причем  =3/5; — проехал легковой автомобиль, причем   = 2/5.

 Условная вероятность, что проезжающий грузовой автомобиль подъедет на заправку:  = 0,1 . Для легкового:  = 0,2.

Вероятность того, что проезжающий автомобиль подъедет на заправку, по формуле полной вероятности равна Р(А) =   +  = 3/5  0,1 + 2/5  0,2 = 0,14

Искомая вероятность того, что подъехавший к заправке автомобиль будет грузовым, по формуле Бейеса равна  =  =  = 3/7

Ответ: 3/7.

#100

Две перфораторщицы набили на разных перфораторах по одинаковому комплекту перфокарт. Вероятность того, что первая перфораторщица допустит ошибку, равна 0,05; для второй перфораторщицы эта вероятность равна 0,1. При сверке перфокарт была обнаружена ошибка. Найти вероятность того, что ошиблась первая перфораторщица. (Предполагается, что оба перфоратора были исправны.)

Решение.

Обозначим через событие А – ошибку перфораторщицы. Тогда,  – ошибка сделана первой перфораторщицей,  - ошибка сделана второй перфораторщицей. Причем P( )=0,5 и P( )=0,5, т.к. обе работали одинаково.

Условная вероятность того, что первая перфораторщица допустит ошибку, равна (A)=0,05;

Условная вероятность того, что вторая перфораторщица допустит ошибку, равна (A)=0,1.

Вероятность того, что наудачу взятая перфокарта, окажется с ошибкой равна, по формуле полной вероятности равна:

P(A)= P( )* (A)+ P( )* (A)=0,5*0,05+0,5*0,1= .

Искомая вероятность того, что взятая перфокарта произведена первой перфораторщицей, по формуле Бейеса равна:

= = = .

 

#101

В специализированную больницу поступают

в среднем 50% больных с заболеванием К, 30%—с за-

заболеванием L, 20%—с заболеванием М- Вероятность

полного излечения болезни К равна 0,7; для болезней L

и М эти вероятности соответственно равны 0,8 и 0,9.

Больной, поступивший в больницу, был выписан здоро-

здоровым. Найти вероятность того, что этот больной страдал

заболеванием К.

 

Решение

Больные поступают в больницу в разном процентном соотношении. Р(k)= 0.7, P(L)=0.3,P(M)= 0.2, где K,L,M – заболевания, а Р(Х)- вероятность поступления с данным заболеванием.Тогда Pk(A)=0.7, Pl(A)=0.8 ,Pm(A)=0.9 это вероятность полного излечения от данного заболевания. Чтобы найти вероятность что Больной, поступивший в больницу, был выписан здоровым надо найти :

P(A)= Pk(a)*P(k) + Pl(a)*P(l) + Pm(a)*P(m) = 0.7*0.5 + 0.8*0.3 + 0.9*0.2 = 0.77

 

А вероятность что больной страдал именно заболеванием К равно:

Pa(K) = (Pk(a)*P(k))/P(A)= (0.5*0.7)/0.77 = 5/11

 

#102

Изделие проверяется на стандартность одним из двух товароведов . Вероятность того, что изделие попадет к первому товароведу , равна 0,55, а ко второму – 0,45. Вероятность того, что стандартное изделие будет признано стандартным первым товароведом , равно 0,9, а вторым – 0,98. Стандартное изделие при проверке было признано стандартным. Найти вероятность того , что это изделие проверил второй товаровед.

 

Решение: Обозначим через А – изделие признана стандартной.  - вероятность того, что изделие попало к первому товароведу. - ко второму. P( ) = 0,55 , P( ) = 0,45.

Условная вероятность того что изделие будет признано стандартным первым товароведом равна (A) = 0,9, вторым - (A) = 0,98.

Вероятность того, что изделие будет признано стандартным по формуле полной вероятности равна

P(A)= P( ) (A) + P( ) (A) = 0,55 * 0,9 + 0,45 * 0,98 = 0,936

Искомая вероятность того, что изделие проверил второй товаровед, по формуле Бейеса равна

( )= P( ) * (A) / P(A)= 0,45*0,98 / 0,936 = 0,47.

 

#103

Событие А может появится при условии появления одного из несовместимых событий В1, В2,…, Вn, образующих полную группу событий. После появления события А были переоценены вероятности гипотез, то есть были найдены условные вероятности РА(Вi) (i=1,2,…,n). Доказать, что сумма РА(Вi) (i=1,2,…,n) равна 1.

Решение:

По формуле Бейеса:

              i=1n∑РА(Вi)= i=1n∑Р(Вi)* РВi(А)/Р(А)=Р(А)/Р(А)=1

              Что и требовалось доказать.

 

#104

Условие:

Событие  может появиться при условии появления одного из несовместных событий (гипотез) , образующих полную группу событий. После появления события  были переоценены вероятности этих гипотез, т.е. были найдены условные вероятности этих гипотез, причем оказалось, что . Чему равна условная вероятность  гипотезы ?

 

Решение:

Так как события  образуют полную группу, и  появится при условии появления лишь одного из них, то верно . Так как имеем , то:

 

#105

Имеются три партии деталей по 20 деталей в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равно 20, 15, 10. Из наудачу выбранной партии наудачу извлечена деталь, оказавшаяся стандартной. Деталь возвращают в партию

и вторично из той же партии наудачу извлекают деталь, которая также оказывается стандартной. Найти вероятность того, что детали были извлечены из третьей партии.

 

Решение:

Обозначим через А событие – в каждом из двух испытаний была извлечена стандартная деталь. Можно предположить, что B1 – детали извлекались из первой партии; B2 – детали извлекались из второй партии; В3 – детали извлекались из третей партии.

Детали извлекались на удачу, поэтому вероятности предположений одинаковы:

P(B1) = P(B2) = P(B3) =

Вероятность того, что из первой партии будут последовательно извлечены две стандартные детали; поэтому    

Условная вероятность  т.е вероятность того, что из второй партии будут извлечены две стандартные детали:

Найдем условную вероятность  т.е вероятность того, что из третей партии будут последовательно извлечены две стандартные детали:

Искомая вероятность того, что обе извлеченные детали стандартные взяты из третей партии, по формуле Бейеса равна

 

Ответ:

 

#106

Условие:

Батарея из трех орудий произвела залп, причем два снаряда попали в цель. Найти вероятность того, что первое орудие дало попадание, если вероятности попадания в цель первым, вторым и третьим орудиями соответственно равны  , , .

 

Решение:

Обозначим через A событие- два орудия попали в цель. Сделаем два предположения: - орудие не попало в цель.

По условию , следовательно

Найдем условную вероятность , т.е. вероятность того, что в цель попало 2 снаряда, причем один из них послан первым орудием и, следовательно, второй - либо вторым орудием, либо третьим. Эти два события несовместны, поэтому применима теорема сложения:

.

Найдем условную вероятность , т.е. вероятность того, что в цель попало два снаряда, причем первое орудие дало промах. Другими словами найдем вероятность того, что второе и третье орудие попали в цель. Эти два события независимы, поэтому применима теорема умножения:

 

Искомая вероятность того, что первое орудие дало попадание, по формуле Бейеса равна:

.

 

Ответ:

 


#107

Три стрелка произвели залп, причем две пули поразили мишень. Найти вероятность того, что третий стрелок поразил мишень, если вероятности попадания в мишень первым, вторым и третьим стрелками соответственно равны 0,6, 0,5 и 0,4.

 

Решение. Обозначим через А событие – две пули поразили мишень. Сделаем два предположения (гипотезы): В1 – третий стрелок поразил мишень; В2 – третий стрелок не попал в мишень.

 

По условию, Р(В1) = 0,4; следовательно (событие В2 противоположно событию В1),

 

Р(В2) = 1 – 0,4 = 0,6.

 

Найдем условную вероятность РВ1(А), т.е. вероятность того, что мишень поразили две пули, причем одна из них принадлежит третьему стрелку и, следовательно, вторая – либо первому стрелку (при этом второй не попал), либо второму стрелку (при этом первый не попал). Эти два события несовместны, поэтому применима теорема сложения:

 

РВ1(А) = p1∙q2 + p2∙q1 = 0,6∙0,5 + 0,5∙0,4 = 0,5.

 

Найдем условную вероятность РВ2(А), т.е. вероятность того, что мишень поразили две пули, причем третий стрелок промахнулся. Другими словами, найдем вероятность того, что первый и второй стрелки поразили мишень. Эти два события независимы, поэтому применима теорема умножения:

 

РВ2(А) = p1∙p2 = 0,6∙0,5 = 0,3.

 

Искомая вероятность того, что третий стрелок поразил мишень, по формуле Бейеса равна

 

РА(В1) = Р(В1)∙РВ1(А)/[ Р(В1)∙РВ1(А) + Р(В2)∙РВ2(А)] = 0,4∙0,5/( 0,4∙0,5 + 0,6∙0,3 ) = 10/19.

 

Ответ: 10/19.

 

#108

Два из трех независимо работающих элементов вычислительного устройства отказали. Найти вероятность того, что отказали первый и второй элементы, если вероятности отказа первого, второго и третьего элементов соответственно равны 0,2; 0,4 и 0,3.

 

Решение. Обозначим через А событие – отказали два элемента. Можно сделать следующие предположения (гипотезы):

В1 - отказали первый и второй элементы, а третий элемент исправен, причем (поскольку элементы работают независимо, применима теорема умножения)

 

Р(В1) = p1∙p2∙q3 = 0,2∙0,4∙0,7 = 0,056;

 

В2 - отказали первый и третий элементы, а второй элемент исправен, причем

 

Р(В2) = p1∙p3∙q2 = 0,2∙0,3∙0,6 = 0,036;

 

В3 - отказали второй и третий элементы, а первый - исправен, причем

 

Р(В3) = p2∙p3∙q1 = 0,4∙0,3∙0,8 = 0,096;

 

В4 - отказал только один элемент; В5 - отказали все три элемента; В6 - ни один из элементов не отказал.

Вероятности последних трех гипотез не вычислены, так как при этих гипотезах событие А (отказали два элемента) невозможно и значит условные вероятности РВ4(А), РВ5(А) и РВ6(А) равны нулю, следовательно, равны нулю и произведения Р(В4)∙РВ4(А), Р(В5)∙РВ5(А) и Р(В6)∙РВ6(А) при любых значениях вероятностей гипотез В4, В5 и В6.

Поскольку при гипотезах В1, В2 и В3 событие А достоверно, то соответствующие условные вероятности равны единице:

 

РВ1(А) = РВ2(А) = РВ3(А) = 1.

 

По формуле полной вероятности, вероятность того, что отказали два элемента, равна

 

Р(А) = Р(В1)∙РВ1(А) + Р(В2)∙РВ2(А) + Р(В3)∙РВ3(А) + Р(В4)∙РВ4(А) + Р(В5)∙РВ5(А) + Р(В6)∙РВ6(А) = 0,056 + 0,036 + 0,096 = 0,188.

 

По формуле Бейеса, искомая вероятность того, что отказали первый и второй элементы,

 

РА(В1) = Р(В1)∙РВ1(А)/ Р(А) = 0,056/0,188 = 0,3.

 

Ответ: 0,3.

 

#109

Две из четырех независимо работающих ламп прибора отказали. Найти вероятность того, что отказали первая и вторая лампы, если вероятности отказа первой, второй, третьей и четвертой ламп соответственно равны 0,1, 0,2, 0,3 и 0,4.

 

Решение. Обозначим через А событие – отказали две лампы. Можно сделать следующие предположения (гипотезы):

В1 - отказали первая и вторая лампы, а третья и четвертая лампы исправны, причем (поскольку лампы работают независимо, применима теорема умножения)

 

Р(В1) = p1∙p2∙q3∙q4 = 0,1∙0,2∙0,7∙0,6 = 0,0084;

 

В2 - отказали первая и третья лампы, а вторая и четвертая исправны, причем

 

Р(В2) = p1∙q2∙p3 ∙q4 = 0,1∙0,8∙0,3∙0,6 = 0,0144;

 

В3 - отказали первая и четвертая лампы, а вторая и третья - исправны, причем

 

Р(В3) = p1∙q2∙q3∙p4 = 0,1∙0,8∙0,7∙0,4 = 0,0224;

 

В4 - отказали вторая и третья лампы, а первая и четвертая - исправны, причем

 

Р(В4) = q1∙p2∙p3∙q4 = 0,9∙0,2∙0,3∙0,6 = 0,0324;

 

В5 - отказали вторая и четвертая лампы, а первая и третья - исправны, причем

 

Р(В5) = q1∙p2∙q3∙p4 = 0,9∙0,2∙0,7∙0,4 = 0,0504;

 

В6 - отказали третья и четвертая лампы, а первая и вторая - исправны, причем

 

Р(В6) = q1∙q2∙p3∙p4 = 0,9∙0,8∙0,3∙0,4 = 0,0864;

 

В7 – отказала только одна лампа; В8 - отказали три лампы; В9 - отказали все четыре лампы и В10 – все лампы остались исправны.

Вероятности последних четырех гипотез не вычислены, так как при этих гипотезах событие А (отказали две лампы) невозможно и значит условные вероятности РВ7(А), РВ8(А), РВ9(А) и РВ10(А) равны нулю, следовательно, равны нулю и произведения Р(В7)∙РВ7(А), Р(В8)∙РВ8(А), Р(В9)∙РВ9(А) и Р(В10)∙РВ10(А) при любых значениях вероятностей гипотез В7, В8, В9 и В10.

Поскольку при гипотезах В1 – В6 событие А достоверно, то соответствующие условные вероятности равны единице:

 

РВ1(А) = РВ2(А) = РВ3(А) = РВ4(А) = <



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.