|
|||
Целые числаСтр 1 из 2Следующая ⇒
Действительное число многообразно в своих «потребительских свойствах». Числа могут быть целые точные, дробные точные, рациональные, иррациональные, дробные приближенные, числа могут быть положительными и отрицательными. Числа могут быть «карликами», например, масса атома, «гигантами», например, масса Земли, реальными, например, количество студентов в группе, возраст, рост. И каждое из перечисленных чисел потребует для оптимального представления в памяти свое количество байтов. Очевидно, единого оптимального представления для всех действительных чисел создать невозможно, поэтому создатели вычислительных систем пошли по пути разделения единого по сути множества чисел на типы (например, целые в диапазоне от ... до ..., приближенные с плавающей точкой с количеством значащих цифр ... и т.д.). Для каждого в отдельности типа создается собственный способ представления. Целые числа Целые положительные числа от 0 до 255 можно представить непосредственно в двоичной системе счисления (двоичном коде). Такие числа будут занимать один байт в памяти компьютера. В такой форме представления легко реализуется на компьютерах двоичная арифметика. Если нужны и отрицательные числа, то знак числа может быть закодирован отдельным битом, обычно это старший бит; ноль интерпретируется как плюс, единица как минус. В таком случае одним байтом может быть закодированы целые числа в интервале от –127 до +127, причем двоичная арифметика будет несколько усложнена, так как в этом случае существуют два кода, изображающих число ноль 0000 0000 и 1000 0000, и в компьютерах на аппаратном уровне это потребуется предусмотреть. Рассмотренный способ представления целых чисел называется прямым кодом. Положение с отрицательными числами несколько упрощается, если использовать, так называемый, дополнительный код. В дополнительном коде положительные числа совпадают с положительными числами в прямом коде, отрицательные же числа получаются в результате вычитания из 1 0000 0000 соответствующего положительного числа. Например, число –3 получит код 1 0000 0000 – 0000 0011 = 1111 1101. В дополнительном коде хорошо реализуется арифметика, так как каждый последующий код получается из предыдущего прибавлением единицы с точностью до бита в девятом разряде. Например, 5-3 = 5 + (-3). 0000 0101 + 1111 1101 = 1 0000 0010, т.е., отбрасывая подчеркнутый старший разряд, получим 2. Аналогично целые числа от 0 да 65536 и целые числа от –32768 до 32767 в двоичной (шестнадцатеричной) системе счисления представляются в двухбайтовых ячейках. Существуют представления целых чисел и в четырехбайтовых ячейках.
|
|||
|