Хелпикс

Главная

Контакты

Случайная статья





Тема «Теоремы сложения и умножения вероятностей»



Тема «Теоремы сложения и умножения вероятностей»

Задание на 2 пары на 08.12 и 10.12 !!!! Записать всю теорию и подробно примеры, решить задачи.

Работу сдать 10.12 до 16.00

Решить задачи, используя теоремы сложения и умножения вероятностей

1. В читальном зале имеется шесть учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что оба учебника окажутся в переплете.

2. В урне белых и черных шаров. Из урны вынимают два шара. Какова вероятность того, что оба шара будут белыми, если выемку производить: а) с возвращением; б) без возвращения.

3. Устройство состоит из трех элементов, работающих независимо. Вероятности безотказной работы за определенный промежуток времени первого, второго и третьего элемента соответственно равны 0,6;0,7;0,8. Найти вероятности того, что за это время безотказно будут работать: а) только один элемент; б) только два элемента; в) все три элемента; г) хотя бы два элемента.

Сложение и умножение вероятностей

Суммой двух событий A и B называется событие C=A+B, состоящее в появлении или события A, или события B, или обоих вместе. Ключевое слово «или» («либо»).

Произведением двух событий A и B называется событие C=AB, состоящее в совместном выполнении события A и события B. Ключевое слово «и».

Два события называются несовместными, если они не могут появиться одновременно.

Теорема сложения.

для несовместных событий;

для совместных событий.

Два события называются независимыми, если вероятность одного из них не зависит от появления или непоявления другого.

Условной вероятностью называют вероятность события A, вычисленную в предположении, что событие B уже наступило.

Теорема умножения.

для независимых событий;

для зависимых событий.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.