Хелпикс

Главная

Контакты

Случайная статья





Mechanical Properties



Mechanical Properties

 

The mechanical properties of a material describe how it will react to physical forces. Mechanical properties occur as a result of the physical properties inherent to each material, and are determined through a series of standardized mechanical tests.

 

 

Strength

 

Strength has several definitions depending on the material type and application. Before choosing a material based on its published or measured strength it is important to understand the manner in which strength is defined and how it is measured. When designing for strength, material class and mode of loading are important considerations.

 

 For metals the most common measure of strength is the yield strength. For most polymers it is more convenient to measure the failure strength, the stress at the point where the stress strain curve becomes obviously non-linear. Strength, for ceramics however, is more difficult to define. Failure in ceramics is highly dependent on the mode of loading. The typical failure strength in compression is fifteen times the failure strength in tension. The more common reported value is the compressive failure strength.

 

 

 

Ductility

 

Ductility is a measure of how much deformation or strain a material can withstand before breaking. The most common measure of ductility is the percentage of change in length of a tensile sample after breaking. This is generally reported as % El or percent elongation. The R.A. or reduction of area of the sample also gives some indication of ductility.

 

 

Toughness

 

Toughness describes a material's resistance to fracture. It is often expressed in terms of the amount of energy a material can absorb before fracture. Tough materials can absorb a considerable amount of energy before fracture while brittle materials absorb very little. Neither strong materials such as glass or very ductile materials such as taffy can absorb large amounts of energy before failure. Toughness is not a single property but rather a combination of strength and ductility.

 

 The toughness of a material can be related to the total area under its stress-strain curve. A comparison of the relative magnitudes of the yield strength, ultimate tensile strength and percent elongation of different material will give a good indication of their relative toughness. Materials with high yield strength and high ductility have high toughness. Integrated stress-strain data is not readily available for most materials so other test methods have been devised to help quantify toughness. The most common test for toughness is the Charpy impact test.

 

 In crystalline materials the toughness is strongly dependent on crystal structure. Face centered cubic materials are typically ductile while hexagonal close packed materials tend to be brittle. Body centered cubic materials often display dramatic variation in the mode of failure with temperature. In many materials the toughness is temperature dependent. Generally materials are more brittle at lower temperatures and more ductile at higher temperatures. The temperature at which the transition takes place is known as the DBTT, or ductile to brittle transition temperature. The DBTT is measured by performing a series of Charpy impact tests at various temperatures to determine the ranges of brittle and ductile behavior. Use of alloys below their transition temperature is avoided due to the risk of catastrophic failure.

 

 

Fatigue ratio

 

The dimensionless fatigue ratio f is the ratio of the stress required to cause failure after a specific number of cycles to the yield stress of a material. Fatigue tests are generally run through 107 or 108 cycles. A high fatigue ratio indicates materials which are more susceptible to crack growth during cyclic loading.

 

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.