|
|||
Гликолиз. Кислородное дыхание ⇐ ПредыдущаяСтр 2 из 2 Гликолиз Ø Протекает в цитоплазме клетке. Ø 1 молекула глюкозы расщепляется до 2 молекул ПВК (пировиноградная кислота) и 2 молекул АТФ Ø Чистый выход 2 АТФ Пировиноградная кислота впоследствии превращаются в молочную кислоту. В некоторых организмах на этом этапе происходит брожение. Например, дрожжи. У таких организмов при попадании в организм молекул глюкозы выделяется углекислый газ, этиловый спирт и 2 молекулы АТФ.
Кислородное дыхание Ø Протекает в митохондриях Ø Попадая в митохондрии ПВК (пировиноградная кислота) превращается в ацетил кофермент А Ø Ацетил кофермент А поступает в цикл Кребса (цикл трикарбоновых кислот), в котором последовательно происходит соединение одних молекул с другими и отделение молекул углекислого газа Ø Осуществляется окислительное фосфорилирование Ø В итоге кислородного этапа образуются 36 молекул АТФ, так как 2 молекулы ПВК расщепляются на углекислый газ и воду На 1 молекулу ПВК приходится 18 АТФ. Нарушение баланса между этими двумя процессами жизнедеятельности неизбежно приводит к расстройству обмена веществ в организме. Нарушение обмена веществ могут иметь разные причины и проявляться по-разному. Самое известное нарушение обмена веществ - это ожирение, которое в свою очередь может вызывать множество заболеваний. Есть и другие, менее известные нарушения обмена веществ, которые имеют как приобретенный, так и наследственный характер (диабет, аритмия, анемия и т.д). Большое влияние на метаболизм оказывает и образ жизни человека: характер его питания, сбалансированность рациона, продолжительность сна, частота стрессовых ситуаций, которым подвергается человек, физическая активность. Общая интенсивность обменных процессов в течение жизни меняется. Обычно у взрослого здорового человека устанавливается равновесие между суточной затратой веществ и энергии и поступлением питательных веществ. Тогда вес тела остается без изменений. Если поступления питательных веществ недостаточно для пополнения затрат, то организм начинает расходовать свои запасы. Это приводит к потере веса. При избытке поступающих в организм питательных веществ, по сравнению с расходами тела, равновесие также нарушается, и человек начинает прибавлять в весе. Уровень обмена веществ может под влиянием тех или иных причин повышаться или понижаться. Например, при усиленной физической работе жизнедеятельность мышц повышается. Наблюдающееся одновременно усиление процессов диссимиляции вызывает увеличение, повышение процессов ассимиляции. Известно, что если какие-либо мышцы тела усиленно работают, то они через некоторое время увеличиваются в объеме. Слабая работа мышц ведет к понижению обмена, а, следовательно, и процессов ассимиляции, что приводит к уменьшению объема мышц. В растущем организме увеличивается количество клеток вследствие их размножения. Регуляция всех процессов обмена веществ осуществляется в основном центральной нервной системой. Возбуждения, которые передаются работающему органу через нервную систему, оказывают большое влияние на процессы ассимиляции и диссимиляции. Влияние нервной системы на обмен веществ было доказано при изучении влияния нерва, усиливающего деятельность сердца. При раздражении этого нерва наблюдается увеличение силы сокращения сердца без учащения его ритма. Это объясняется изменением интенсивности обмена веществ в сердечной мышце. Эта функция нервной системы названа трофической (от греческого слова «трофос» - пища), т. е. управляющей питанием, жизнедеятельностью органа, его обменом веществ. Учение о трофической функции нервной системы было в дальнейшем разработано советскими физиологами. В лаборатории было изучено влияние коры головного мозга на обмен веществ. Была доказана зависимость обмена веществ от коры головного мозга. В одном из опытов было установлено, что при одной только мысли о физической работе обмен веществ повышался. Регуляция обмена веществ на клеточном уровне осуществляется путём регуляции синтеза и активности ферментов. Синтез каждого фермента определяется соответствующим геном.
Белки - наиболее важная составная часть нашей пищи. Являясь основным строительным материалом для восстановления и обновления клеток и тканей организма, они участвуют в образовании ферментов, гормонов и усвоении других пищевых веществ. Кроме того, с белками связано осуществление и других жизненно важных функций организма (рост, размножение). Последними исследованиями показано, что белки определяют иммунитет (невосприимчивость организма к инфекционным и другим заболеваниям). Поэтому на наш взгляд, вот почему не правы сторонники голодания и чистого вегетарианства. В состав пищевых белков входит около двадцати аминокислот, причем восемь из них (триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин, фенилаланин) не образуются в организме и являются незаменимыми аминокислотами. В настоящее время считают наиболее дефицитными три аминокислоты: триптофан, лизин, метионин; поэтому особенно важно обеспечить их поступление в организм. Этих аминокислот в продуктах растительного происхождения, и особенно в злаковых, содержится очень мало. В продуктах животного происхождения их больше (в частности лизина). Эти белки не только сами хорошо усваиваются, но и способствуют усвоению белков растительного происхождения, что обеспечивает сбалансированность аминокислотного состава поступающей в организм пищи. В этом отношении для обеспечения аминокислотного состава, необходимого организму, целесообразно использовать различные сочетания продуктов, взаимно дополняющих друг друга. Например, употребление пшеничного хлеба с молоком более рационально с биологической точки зрения, чем употребление одного хлеба. Не всегда разнообразное питание обеспечивает сбалансированное поступление пищевых веществ в организм. Замечено, если употреблять в избытке мясные продукты, способствующие повышенному содержанию незаменимых аминокислот, в организме могут наступить нарушения функции органов и систем. Будет страдать, прежде всего, пуриновый обмен и выделительная функция почек. При сгорании 1 г белка в организме освобождается около 4 ккал энергии. Много белков животного происхождения содержат мясные, рыбные блюда (шницель мясной, бефстроганов, мясо отварное, рыба заливная и т.д.). Некоторые готовые блюда содержат оптимальное количество белков животного и растительного происхождения, например мясо, рыба с различными крупяными, овощными гарнирами. Особую ценность имеют белки рыбы. Они легко усваиваются организмом и по своим качествам не уступают белкам мяса и птицы. Кроме полноценного белка, рыба содержи витамины А и D, большое количество солей и микроэлементов (йод, цинк, фосфор и др.) Исключительное значение имеют молоко и молочные продукты; ценность этих продуктов обусловлена благоприятным соотношением входящих в белки молока аминокислот, хорошей усвояемостью жира, молочного сахара, витаминов, минеральных солей и способностью связывать некоторые токсичные элементы и выводить их из организма. Поэтому не случайно с возрастом рекомендуется увеличить потребление молочных продуктов. За 160 дней в организме происходит полная замена всех собственных белков. Средняя суточная потребность белка для служащего массой тела 70 кг составляет примерно 91 в сутки, или 1.3 /кг массы тела. С увеличением интенсивности физического труда суточная потребность организма в белке может достигать 150 г и выше. Минимальная потребность белка составляет 0.7 г/кг нормальной массы тела. Жиры заменимые продукты питания в обеспечении многообразных жизненных функций организма. Они являются подлинным концентратом энергии. Жиры - обширный класс органических веществ, ведущее их назначение - энергообеспечение организма. Хорошо известно, что молекулы жира обладают большой энергоемкостью по сравнению с углеводами. Так, при сгорании (окислении) 1 г жира до конечных продуктов - воды и углекислого газа выделяется в 2 раза больше энергии, чем при окислении того же количества углеводов. Жиры являются аккумуляторами энергии, но сгорают они в пламени углеводов. Иными словами, чтобы жиры освободили энергию, необходимо достаточное количество углеводов и кислорода. Хорошо известно, что длительное голодание легче переносят люди, имеющие толстую жировую прослойку. Велика роль жира как пластического материала и в сохранении теплового гомеостаза. Особое место здесь занимает подкожно-жировая клетчатка - скопление жировой ткани разной толщины под всей поверхностью кожи. Температура внутренних органов выше, чем температура кожи, подкожной клетчатки и мышц. Причем перепады температуры достаточно большие, температура лица может быть 18 C, кистей - 10, в то время как температура внутренних органов остается неизменной, равной 37 C. Это - результат теплового обмена организма за счет химических реакций, идущих с выделением тепла. Основной вклад в производство тепла вносят печень, головной мозг, скелетные мышцы, а сохраняет тепло, не давая ему рассеиваться в пространстве, подкожно-жировая клетчатка (жир - плохой проводник тепла). Жировая ткань, будучи материалом рыхлым и мягким, «укутывает» хрупкие органы, предохраняй их от механических сотрясений и травм. В организме жир в основном входит в состав различных органов и заполняет пространство между ними. Но есть орган, почти целиком состоящий из жира (или сала), который так и называется - сальник. Жир наряду с белками используется в качестве пластического материала. Подробно разобраться в строении клетки и структуре мембран исследователям помог электронный микроскоп. Были обнаружены неизвестные ранее детали в морфологии клетки и ее компонентов, в том числе и мембран, что, в свою очередь, помогло установить их функции. Прежде всего, подчеркнем, что клетка сохраняет свое «лицо» благодаря оболочке, разделяющей клетку и окружающую среду. Оболочка - сложное образование, своего рода «бутерброд», составленный из двойного слоя липидов, расположенных между двумя слоями белков. Белки не создают сплошной пленки, часть молекул находится вне липидов, а некоторые белки внедряются в липидный слой и даже его пронизывают. С физико-химической точки зрения мембрана представляет собой полупроницаемую перепонку, сито, избирательно пропускающее одни и задерживающее другие вещества. Во внеклеточной среде (тканевой жидкости, омывающей клетки) преобладает натрий, которого мало в самой клетке, а концентрация калия в клетке в 40 раз, магния в 15 раз выше, чем во внеклеточном пространстве. Своеобразным пропуском для проникновения вещества сквозь мембрану в клетку служит способность вещества растворяться в липидах - жирорастворимые молекулы лучше проходят внутрь клетки, чем водорастворимые. В липидах растворяется и целая группа витаминов (A, D, E и др.). Вот почему морковь, содержащую большое количество необходимого для человека провитамина A (каротина), необходимо вводить с жирами (растительное масло, сметана). Большая группа липидов - ненасыщенные жирные кислоты, которые, поступая в организм, способствуют нормальному обмену холестерина и этим предотвращают атеросклероз. В настоящее время хорошо известно, что в клинике внутренних болезней при лечении атеросклероза с успехом используется подсолнечное, хлопковое, оливковое масло. Ненасыщенные жирные кислоты входят и в структурную оболочку тканей и органов, придаю им бактерицидные свойства. Меньшее количество ненасыщенных жирных кислот содержится в жирах животного происхождения. Значение их также велико для организма. Из желудочно-кишечного тракта жиры попадают через лимфу в легкие, где откладываются в большом количестве, предохраняя организм от простудных заболеваний. В народной медицине известно, что тугоплавкие жиры (барсучье, собачье сало), потребляемые человеком, излечивали ряд легочных недугов (туберкулез легких). Однако избыточное введение животных жиров (сливочное масло, свиное сало) способствует развитию атеросклероза, понижению вентиляции легких и возникновению простудных заболеваний. Однако необходимо отметить, что избыточное введение в организм полиненасыщенных жирных кислот усиливает переокисление внутриклеточного жира, что повреждает мембраны и нарушает жизнедеятельность клеток. В день рекомендуется потреблять 25-30 г растительного масла и 50-60 г животных жиров. Из ненасыщенных жирных кислот (в основном из арахидоновой) образуется большая группа биогенных веществ. Это - простагландины. В последние годы изучением простагландинов занимаются во многих лабораториях мира. Объясняется такое пристальное внимание тем, что, по мнению некоторых ученых, открытие простагландинов знаменует новую эру в медицине, быть может, более важную, чем эра антибиотиков. Свое название простагландины получили потому, что вначале их считали продуктом выделения предстательной железы (простаты). Первоначально было замечено, что мужская семенная жидкость активно воздействует на мышцы матки, попеременно вызывая ее сокращение и расслабление. Кроме того, выделения простаты расширяют кровеносные сосуды, что особенно заинтересовало врачей в плане возможности лечения гипертонической болезни. Дальнейшие исследования показали, что сосудорасширяющим (спазмолитическим) эффектом обладают вытяжки из семенных пузырьков простаты не только человека, но и животных. Простагландины широко распространены в живой природе, они образуются не только в предстательной железе, но и вырабатываются чуть ли не во всех тканях организма, правда, в меньших количествах. Они обнаружены в мозге, селезенке, почках, легких, желудке, кишечнике, мышцах и даже в радужной оболочке глаз. А совсем недавно (в 70-х годах) простагландины выделили из растений. Учеными было доказано, что из арахидоновой кислоты (предшественника простагландинов) образуются два вещества. Одно из них получило название простациклин, а второе - тромбиксан. Первое усиливает свертываемость крови и выделение адреналина, способствует спазму сосудов, повышению уровня сахара, липидов в крови, второе тормозит эти процессы. Эти два вещества взаимно регулируют жизненно важные функции организма [3]. В растительных жирах содержатся линолевая и линоленовая полиненасыщенные жирные кислоты. В животных жирах их меньше, но важно то, что они являются поставщиками арахидоновой кислоты. Из таблицы следует, что наиболее богато полиненасыщенными жирными кислотами подсолнечное масло. В этом отношении оно в 4 раза превосходит оливковое. Из животных жиров наиболее ценным является свиной, содержащий все полиненасыщенные жирные кислоты. Липиды служат исходным материалом для синтеза ряда гормонов в организме. Например, стерины (холестерин) являются сырьем, из которого в железах внутренней секреции образуются стероидные мужские и женские половые гормоны и гормоны коры надпочечников, химической основой которых является стероидное ядро. Половые гормоны - мужские (андрогены) и женские (эстрогены) -определяют тип скелета, развитие мышечной системы, степень отложения жира и его распределение в организме, тембр голоса, оволосение, особенности поведения и другие характерные черты, отличающие мужчину от женщины. Гормоны коры надпочечников регулируют жировой, белковый, углеводный, водно-солевой обмен, а также кровяное давление, деятельность центральной нервной системы, почек и другие физиологические функции организма. Итак, жиры в умеренном количестве необходимы для нормальной жизнедеятельности организма: их дефицит ведет к серьезным нарушениям, а подчас и гибели организма. Однако избыточное поступление жира с пищей, повышенное отложение его в подкожно-жировой клетчатке, в печени таят в себе немалую опасность для здоровья. Это своеобразная «бомба замедленного действия». Жиры начинают расщепляться в желудочно-кишечном тракте, но процесс этот длительный, так как жир находится в недоступном для ферментов состоянии: ведь для расщепления жира сначала необходимо раздробить его на мельчайшие шарики, то есть эмульгировать. Эмульгируется жир в тонком кишечнике желчью и затем всасывается в лимфу. Отметим, что в незначительном количестве жир может всасываться и в цельном виде, нерасщепленным. В стенке кишки из продуктов расщепления пищевого жира образуются крупные капли, получившие название «хиломикроны». Они богаты триглицеридами, холестерином и содержат очень небольшое количество белков и фосфолипидов. Русский ученый К. А. Тимирязев писал: «Давно замечено, что мы не обращаем внимания на самые замечательные факты только потому, что они слишком обыкновенны. Многим ли, действительно, приходит в голову, что ломоть хлеба, хорошо испеченного пшеничного хлеба... составляет одно из величайших изобретений человеческого ума». Необходимыми компонентами для организма являются углеводы, которые попадают с растительной пищей, в том числе и с хлебом. Углеводы служат основным источником энергии. Свыше 56% энергии организм получает за счет углеводов, остальную часть - за счет белков и жиров. Для деятельности головного мозга единственным поставщиком энергии является глюкоза. Углеводы обнаруживаются во всех без исключения органах и тканях. Они входят в состав оболочек клеток и субклеточных образований, принимают участие в образовании многих важнейших веществ. Углеводы обладают способностью накапливаться в организме в виде гликогена в печени и мышцах. Углеводы в организме используются в основном как источник энергии. Обмен углеводов - это совокупность процессов их превращения в организме [2]. Он осуществляется в три фазы: гидролитическое расщепление углеводов в пищеварительном аппарате и всасывание продуктов гидролиза в кровь; превращение и использование всосавшихся из пищеварительного аппарата продуктов гидролиза углеводов в организме, сопровождающееся включением углеводов в структуры организма и освобождением энергии; выделение конечных продуктов обмена углеводов из организма. Превращение углеводов под действием ферментов начинается в ротовой полости, продолжается в желудке и происходит в основном в кишечнике. Углеводы всасываются главным образом в виде глюкозы в тонком кишечнике и поступают в кровь. С кровью глюкоза поступает в печень, где частично задерживается, частично проходит с кровью дальше и достигает тканей всех органов. Всосавшаяся глюкоза в основном используется как энергетический материал, так как возможности отложения ее в организме весьма ограничены. В печени, в мышцах и других органах глюкоза депонируется в виде гликогена. Часть глюкозы в печени превращается в жир и откладывается в жировых депо. Во всех тканях, пройдя стадию депонирования, глюкоза используется как источник энергии, т.е. окисляется. Окисление глюкозы происходит как в аэробных, так и анаэробных условиях. Вначале глюкоза активируется, превращается в пировиноградную кислоту. В аэробных условиях пировиноградная кислота окисляется в цикле Кребса до диоксида углерода и воды с образованием АТФ. При полном окислении молекулы глюкозы образуется 38 молекул АТФ. В анаэробных условиях пировиноградная кислота превращается в молочную кислоту с образованием энергии. Таким образом, из молекулы глюкозы при отсутствии кислорода образуется 2 молекулы АТФ. Затем в печени из молочной кислоты синтезируются глюкоза и гликоген. Если же на этапе молочной кислоты возникают аэробные условия, то она превращается в пировиноградную кислоту, которая уже окисляется в цикле Кребса. Глюкоза используется для синтеза лактозы, липидов, глицерина, аминокислот, жирных кислот. У жвачных животных углеводы кормов в большей части превращаются, сбраживаются в преджелудках до образования летучих жирных кислот: уксусной, пропионовой и масляной, которые всасываются в кровь. Затем в организме уксусная, пропионовая и масляная кислоты используются для образования липидов и кетоновых тел; пропионовая кислота - для синтеза глюкозы; уксусная, масляная и пропионовая кислоты окисляются в тканях органов с образованием АТФ, диоксида углерода и воды. В крови человека и моногастричных животных обеспечивается концентрация глюкозы на уровне 1,0… 1,2 г/л, у полигастричных - 0,42…0,6 г/л. Обмен воды и минеральных ионов в организме тесно взаимосвязаны и взаимозависимы. Это обусловлено, прежде всего, необходимостью поддержания осмотического давления на относительно постоянном уровне во внутренней среде организма и в клетках, а также значением сил осмоса для обмена и выведения из организма, как воды, так и минеральных ионов. Для поддержания осмотического давления важна концентрация всех растворенных в воде минеральных и органических ионов. Осуществление ряда физиологических процессов, как, например, возбуждения, синаптической передачи, сокращения мышцы невозможно без поддержания в клетке и во внеклеточной среде определенной концентрации Na+, K+, Са+ и других минеральных ионов. Поскольку их синтез в организме не осуществляется, все они должны поступать в организм с пищей и питьем. Данные о физиологической роли, суточной потребности и пищевых источниках минеральных ионов приведены в приложении 1. В этой же таблице представлены сведения о микроэлементах. К ним относят ту часть минеральных ионов, которые выполняют в организме ряд перечисленных в таблице функций, но суточная потребность в этих веществах невелик. Термин витамины используется для характеристики группы разнородных по химической природе веществ, не синтезируемых или синтезируемых в недостаточных количествах в организме, но необходимых для нормального осуществления обмена веществ, роста, развития организма и поддержания здоровья. Эти вещества не являются непосредственными источниками энергии и не выполняют пластических функций. Витамины являются составными компонентами ферментных систем и играют роль катализаторов в обменных процессах [15]. Сведения об источниках витаминов, их суточной потребности для взрослого человека и значении в осуществлении физиологических функций приведены в табл.1 прил.2. Основными источниками водорастворимых витаминов (группа В, витамин С) являются, как правило, продукты питания растительного происхождения и в меньшей мере продукты питания животного происхождения. Эти витамины легко всасываются из желудочно-кишечного тракта в кровь и лимфу. Основными источниками жирорастворимых витаминов (витамины А, Д, Е и К) являются продукты животного происхождения. Для удовлетворения потребностей организма в витаминах имеет значение не только достаточное содержание в пищевом рационе богатых витаминами продуктов растительного и животного происхождения, но и нормальное осуществление процессов пищеварения и всасывания веществ в желудочно-кишечном тракте. Так при нарушениях пищеварения в тонком кишечнике, связанных с недостаточным поступлением в 12-перстную кишку желчи или панкреатической липазы, может наблюдаться недостаточное всасывание из желудочно-кишечного тракта витаминов при их нормальном содержании в пище. Витамины в продуктах питания могут содержаться в активной или неактивной форме (провитамины). Активация провитаминов происходит после их поступления в организм. Важным источником образования и поступления в организм витаминов (К, В6) является микрофлора кишечника. Длительное голодание, питание пищевыми продуктами, не содержащими или содержащими малое количество витаминов, употребление в пищу продуктов после их длительного хранения или неправильной переработки, нарушение пищеварительных функций могут приводить к недостаточному поступлению витаминов в организм (гиповитаминозу). Гиповитаминоз или полное прекращение поступления витамина в организм (авитаминоз) приводят к неспецифическим изменениям (снижение умственной и физической работоспособности), так и к специфическим изменениям организме, характерным для гипо- и авитаминоза конкретного витамина. Избыточное поступление в организм витаминов может приводить к гипервитаминозу. При поступлении водорастворимых витаминов в дозах, превышающих суточную потребность, эти вещества могут быстро выводиться из организма. При этом каких-либо признаков гипервитаминоза не отмечается. Однако, установлено, что потребление больших количеств витамина В6 может сопровождаться нарушением функции периферической нервной системы. Гипервитаминоз К сопровождается нарушением функции желудочно-кишечного тракта и анемией. Изменения в организме, наблюдаемые при гипервитаминозах А, Д, РР приведены в табл. 1 прил. 1. Следовательно, в обменных процессах нашего организма участвуют все химические и природные элементы - белки, жиры и углеводы. Выполняя каждый свою роль - белки, создавая строительный материал, а жиры с углеводами, регулируя баланс энергетических затрат - четко и слаженно взаимодействуют друг с другом. К ним в помощь приходят минеральные вещества и витамины, которые улучшают клеточную среду.
НатрийСодержится в больших количествах во внекле-точной жидкости и плазме крови. Играет важнейшую роль: в процессах возбуждения, определении величины осмотического давления, распределении и выведении воды из организма; участвует в функции бикарбонатной буферной системы. Суточная потребность 2-3 г, а в виде NaCI - 5 г.Поваренная соль, в составе растительной и животной пищи, в жидкостях, потребляемых при питье.КальцийОдин из наиболее важных минеральных элементов организма. Выполняет функцию структурного компонента в тканях зубов и костей. В этих тканях содержится около 99% от общего количества Са*+ в организме. Необходим для осуществления процессов свертывания крови, возбуждения клеток, синаптической передачи, сокращения мышц, вторичный посредник в регуляции внутриклеточного метаболизма и др. Суточная потребность 0,8 гМолоко и молочные продукты, овощи, зеленые листья.КалийСодержится преимущественно внутри клеток, а также в жидкостях внутренней среды. Играет важную роль в процессах реполяризации после возбуждения в нервных волокнах, сокращении мышц, в том числе миокарда. Суточная потребность 2-3 г.Потребность при нормальном питании удовлетворяется за счет пищевого калия. Наиболее богаты калием овощи, мясо, сухофрукты, орехи.ХлорСодержится как во внеклеточной, так и во внутриклеточной жидкости. Играет роль в процессах возбуждения и торможения, в синаптической передаче, образовании соляной кислоты желудочного сока. Суточная потребность 3-5 гПоваренная соль, в составе растительной и животной пищи; в жидкостях, потребляемых при питье.ФосфорОколо 80% в виде минеральных веществ содержится в костях и зубах. В составе фосфолипидов входит в структуру клеточных мембран, липопротеидов. В составе АТФ и ее производных играет большую роль в метаболизме, осуществлении важнейших физиологических процессов. Суточная потребность около 0,7-0,8 гПищевые продукты, в особенности молоко, мясо, рыба, яйца, орехи, злаки.ЖелезоОколо 66% содержится в гемоглобине крови. Содержится в скелетных мышцах, печени, селезенке, костном мозге, в составе ферментов. Основная функция - связывание кислорода. Суточная потребность 10-15 мгПищевые продукты, в особенности мясо, печень, свежая рыба, яйца, сухофрукты, орехи.ЙодВажнейший компонент гормонов и предшественников гормонов щитовидной железы. Суточная потребность 0,15-0,3 мгЙодированная поваренная соль, морепродукты, рыбий жир, овощи, выращенные на обогащенных йодом почвах.МедьСодержится в печени, селезенке. Играет роль в процессах всасывания железа, образовании гемоглобина, пигментации. Суточная потребность 2-5 мгПищевые продукты, в особенности яйца, печень, почки, рыба, шпинат, сухие овощи, виноград.ФторСодержится в зубных тканях и необходим для сохранения их целостности. Суточная потребность 1 мг. При пятикратной передозировке токсичен.Пищевые продукты, фторированная NaCI, фторированные зубные пасты и растворы.МагнийСодержится в костной ткани, необходим для ее образования, а также для нормального осуществления функции мышечной и нервной тканей. Необходим для многих коферментов. Суточная потребность 250-350 мгМясо, молоко, целые зерна.СераВходит в состав аминокислот, белков (инсулин) и витаминов (В,, Н), суточная потребность предположительно равна 1 гПищевые продукты, в особенности мясо, печень, рыба, яйца.ЦинкВажный компонент ряда ферментов. Необходим для нормального роста. Суточная потребность 10-15 мгПищевые продукты: крабы, мясо, бобы, яичный желток.КобальтВходит в состав витамина В|2 и необходим для нормального осуществления эритропоэза. Суточ-ная потребность точно не известна, предположи-тельно 100-200 мкгПечень.
Приложение 2
Таблица 1 Краткие сведения о витаминах ВитаминСуточная потребность взрослого человекаОсновные источникиФизиологическая рольПризнаки недостаточности12345А* (ретинол)А1 - 0,9 мг В- каротин - 1,8 мгЖивотные жиры, мясо, рыба, яйца, молокоНеобходим для синтеза зрительного пигмента родопсина; оказывает влияние на процессы роста, развития и размноженияНарушаются функции сумеречного зрения; роста, размножения, пролиферации и ороговения эпителия. Нарушается состояние роговицы глаз (ксерофтальмия и кератомаляция).Д **(кальциферол)2,5 мкгПечень и мясо млекопитающих, печень рыб, яйцаНеобходим для всасывания из кишечника ионов кальция и для обмена в организме кальция и фосфораНедостаточное поступление в детском возрасте приводит к развитию рахита, что проявляется нарушением окостенения и роста костей, их декальцификацией и остеомаляциейpp** (никотиновая кислота)150 мгМясо, печень, почки, рыба, дрожжиУчаствует в процессах клеточного дыхания (переносе водорода и электронов); регуляции секреторной и моторной функций желудочно-кишечного тракта и печениВоспаление кожи (пеллагра), расстройства желудочно-кишечного тракта (понос).* - проявления передозировки: головные боли, эйфория, анемия, изменения со стороны кожи, слизистых, костной ткани;** - проявления передозировки: нарушения функций ЦНС и почек; вымывание Са++ из костей и повышение его уровня в крови.Кдо 1 мгЗеленые листья овощей, печень. Синтезируется микрофлорой кишечникаУчаствует в синтезе факторов свертывания крови, протромбина и др.Замедление свертывания крови, спонтанные кровотечения.Е (токоферолы)10-12 мг и дополнительно 0,6 на 1 г ненасыщенных жирных кислотРастительные масла, зеленые листья овощей, яйцаАнтиоксидантЧетко определенных симптомов недостаточности у человека не описаноС (аскорбиновая кислота)50-100 мгСвежие фрукты и растения (особенно шиповник, черная смородина, цитрусовые)Участвует в гидроксилировании, образовании коллагена, включении железа в ферритин. Повышает устойчивость организма к инфекциямРазвивается цинга, проявлением которой являются кровоточивость десен, мелкие кровоизлияния в коже, поражение стенок кровеносных сосудов и др.B1 (тиамин)1,4-2,4 мгЦелые зерна, бобы, печень, почки, отруби, дрожжиУчаствует в энергетическом обмене, принимая участие в декарбоксилировании (кофермент пируваткарбоксилазы)Развивается заболевание бери-бери, сопровождающееся полиневритом, нарушением сердечной деятельности и функций желудочно-кишечного трактаВ2 (рибофлавин)2-3 мгЗерновые бобы, печень, молоко, дрожжи, яйцаВходит в состав дыхательных флавиновых ферментов. Осуществляет перенос водорода и электроновПоражение глаз, светобоязнь; поражение слизистой полости рта, глоссит.В3 (пантотеновая кислота)10 мгЗерновые, бобы, картофель, печень, яйца, рыбаПеренос ацетильной группы (КоА) при синтезе жирных кислот, стероидов и других соединенийОбщая слабость, головокружение, нейромоторные нарушения, дерматиты, поражения слизистых оболочек.В6 (пиридоксин)1,5-3 мгЗерно, бобы, мясо, печень, дрожжи, рыба. Синтезируется микрофлорой кишечникаКофермент таких ферментных систем как трансаминазы, декарбоксилазы, дегидрагазы, десульфогидразы. Играет важную роль в обмене аминокислот, белков и жиров, а также в процессах кроветворения.Повышенная раздражительность, судороги, гипохромная анемияВ12 (цианкобала-мин)2 мкгПечень, синтезируется микроорганизмамиКомпонент ферментов метаболизма нуклеиновых кислот и метилирования. Необходим для гемопоэзаЗлокачественная, пернициозная анемияФолиевая кислота400 мгЗеленые листья овощей, мясо, печень, молоко, дрожжи; синтезируется микроорганизмамиНеобходима для синтеза пуринов и метионина и метаболизма одноуглеродных фрагменов молекул. Стимулирует процессы кроветворения.Н (биотин)150-200 мкгМолоко, яичный желток, печень, синтезируется микроорганизмамиКофермент дезаминаз, карбоксилаз, карбоксилтрансфераз. осуществляет перенос СО2Авитаминоз может развиваться при потреблении больших количеств сырого яичного белка (связывание витамина) и проявляется себорейным дерматитом
Важную роль в обмене веществ играют витамины.
|
|||
|