Хелпикс

Главная

Контакты

Случайная статья





Решение систем показательных и логарифмических уравнений



Решение систем показательных и логарифмических уравнений

На прошлом занятии мы вспомнили, как решаются системы уравнений. Мы продолжим решать системы уравнений, только уравнения будут показательными и логарифмическими. Эти системы решаются теми же способами, о которых мы говорили на прошлом занятии

Системы показательных уравнений

Решить системы уравнений:

Выразим у через х из (2) -го уравнения системы и подставим это значение в (1) -ое уравнение системы.

 y=x+1

Решаем (2) -ое уравнение полученной системы:

2х+2x+2=10, применяем формулу: ax+y=ax∙ay.

2x+2x∙22=10, вынесем общий множитель 2х за скобки:

2х(1+22)=10 или 2х∙5=10, отсюда 2х=2.

2х=21, отсюда х=1. Возвращаемся к системе уравнений.

Ответ: (1; 2).

 Представляем левую и правую части (1) -го уравнения в виде степеней с основанием 2, а правую часть (2) -го уравнения как нулевую степень числа 5

Если равны две степени с одинаковыми основаниями, то равны и показатели этих степеней — приравниваем показатели степеней с основаниями 2 и показатели степеней с основаниями 5.

Получившуюся систему линейных уравнений с двумя переменными решаем методом сложения.

Находим х=2 и это значение подставляем вместо х во второе уравнение системы.

Находим у.

 

 

Решение.

Если в предыдущих двух примерах мы переходили к более простой системе приравнивая показатели двух степеней с одинаковыми основаниями, то в 3-ем примере эта операция невыполнима. Такие системы удобно решать вводом новых переменных. Мы введем переменные u и v, а затем выразим переменную u через v и получим уравнение относительно переменной v.

Решаем (2) -ое уравнение системы.

v (v+63)=64;

v2+63v-64=0. Подберем корни по теореме Виета, зная, что: v1+v2=-63; v1∙v2=-64.

Получаем: v1=-64, v2=1. Возвращаемся к системе, находим u.

Так как значения показательной функции всегда положительны, то уравнения 4x=-1 и

4y=-4 решений не имеют.

Представляем 64 и 1 в виде степеней с основанием 4.

Приравниваем показатели степеней и находим х и у.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.