|
|||
Пределы с неопределенностью вида и метод их решения ⇐ ПредыдущаяСтр 3 из 3 Пределы с неопределенностью вида и метод их решения
Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу. Пример 4 Решить предел Общее правило: если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители. Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Итак, решаем наш предел Разложим числитель и знаменатель на множители Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение: В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе. ! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка. Далее находим корни: Таким образом: Всё. Числитель на множители разложен. Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя. Очевидно, что можно сократить на : Теперь и подставляем -1 в выражение, которое осталось под знаком предела: Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так: Разложим числитель на множители. Пример 5 Вычислить предел Сначала «чистовой» вариант решения Разложим числитель и знаменатель на множители. Числитель: Что важного в данном примере? Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем. Обратите внимание, что на заключительном этапе решения я вынес за значок предела двойку, а затем – минус. ! Важно Вообще, я заметил, что чаще всего в нахождении пределов данного типа приходится решать два квадратных уравнения, то есть и в числителе и в знаменателе находятся квадратные трехчлены.
Домашнее задание
|
|||
|