|
|||||||||||||||||||||||||||||||||||||||||||||||
Угол поворотаСтр 1 из 3Следующая ⇒
Единичная окружность — это окружность, радиус которой принят за единицу измерения.
Числовая окружность — это единичная окружность с установленным соответствием между действительными числами и точками окружности:
Указанное соответствие можно определить следующим образом: каждому числу a соответствует такая точка Р числовой окружности, чтобы дуга ÈОР имела длину |a| и была отложена в положительном направлении если a > 0 и в отрицательном, если a < 0:
Признаки числовой окружности: 1) начало отсчета – правый конец горизонтального диаметра; 2) единичный отрезок – длина радиуса окружности; 3) положительное направление – против часовой стрелки.
Откладывать можно дуги какой угодно длины. То есть числовую окружность можно рассматривать как окружность радиуса 1, на которую «намотана» числовая прямая:
Угол в 1° — это центральный угол, опирающийся на дугу, длина которой равна части окружности.
Угол поворота — это угол, полученный вращением луча около его начала О от начального положения ОА до конечного положения ОВ.
Угол в 1 радиан — это центральный угол, опирающийся на дугу, длина которой равна радиусу окружности.
Радианная мера угла численно равна пути, который проходит точка по дуге единичной окружности, на которую опирается этот угол:
Для связи радианов и градусов используют развернутый угол:
1. Говорят: «угол радиан» или чаще «угол ». Обозначение «радиан» или «рад», как правило, опускают. 2. Термин «радианное измерение углов» равносилен термину «числовое измерение углов», т.е. фраза «угол a равен двум радианам» равносильна фразе «угол a равен числу 2» и даже «угол a равен двум». Поэтому вопрос типа «Чему равно ?» некорректен. Нужно спрашивать: «Чему равен угол ?» (60°) или «Чему равно число ?» (» 1,05).
Угол поворота áПолныйñ оборот — это угол поворота, равный 2p рад (или 360°).
Некоторые положения конечной точки угла поворота:
|
|||||||||||||||||||||||||||||||||||||||||||||||
|