Хелпикс

Главная

Контакты

Случайная статья





Решение способом сложения.



2. Решение способом сложения.

Пример 2: Решим систему уравнений

│2x2 + 3y = xy
x2y = 3xy

Решение.

Второе уравнение умножим на 3:

3x2 – 3y = 9xy

Зачем мы умножили уравнение на 3? Благодаря этому мы получили равносильное уравнение с числом -3y, которое встречается и в первом уравнении, но с противоположным знаком. Это поможет нам буквально при следующем шаге получить упрощенное уравнение (они будут взаимно сокращены).

Сложим почленно левые и правые части первого уравнения системы и нашего нового уравнения:

2x2 + 3y + 3x2 – 3y = xy + 9xy

Сводим подобные члены и получаем уравнение следующего вида:

5x2 = 10xy

Упростим уравнение еще, для этого сокращаем обе части уравнения на 5 и получаем:

x2 = 2xy

Приравняем уравнение к нулю:

x2 – 2xy = 0

Это уравнение можно представить в виде x(x – 2y) = 0.

Здесь мы получаем ситуацию, с которой уже сталкивались в предыдущем примере: уравнение верно только в том случае, если x = 0 или x – 2y = 0.

Значит, исходную систему опять-таки можно заменить равносильной ей совокупностью двух систем:

x = 0
x2y = 3xy

и

x = 2y
x2y = 3xy

Обратите внимание: во второй системе уравнение x – 2y = 0 мы преобразовали в x = 2y.

Итак, в первой системе мы уже знаем значение x. Это ноль. То есть x1 = 0. Легко вычислить и значение y: это тоже ноль. Таким образом, первая система имеет единственное решение: (0; 0).

Решив вторую систему, мы увидим, что она имеет два решения: (0; 0) и (–1; –0,5).

Таким образом, исходная система имеет следующие решения: (0; 0) и (–1; –0,5).

Пример решен.

Домашнее задание: Письменно. Обязательно для всех

№ 7.9; 7.10;  9.15 ;  9.16.

 

ВНИМАНИЕ!!! Выполнить задания вы должны  до  29 апреля 2020 года.  Задания выполняете в рабочих тетрадях. Выполненную домашнюю работу фотографируете (вертикально) и пересылаете мне  

в vk https://vk.com/id589665126  .          ЖЕЛАЮ УДАЧИ!



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.