|
|||
Л. Витгенштейн 3 страница4.51. Предположим, мне даны все элементарные предложения; тогда можно просто спросить: какие предложения я могу построить из них? И это - все предложения, и так они ограничиваются. 4.52. Предложениями является все то, что следует из совокупности всех элементарных предложений конечно, также и из того, что это есть совокупность их всех}. (Так, можно, в известном смысле, сказать- что все предложения - обобщения элементарных предложений.) 4.53. Общая форма предложения есть переменная. 5. Предложение есть функция истинности элементарных предложений. 5.01. Элементарные предложения-аргументы истинности предложения. 5.02. Само собой напрашивается смешение аргументов функции с индексами имен. Я узнаю значение знака настолько же из его аргумента, насколько и из его индекса. 5.1. Функции истинности можно упорядочивать в ряд. 5.101. Функции истинности каждого определенного количества элементарных предложений могут быть написаны в схеме следующего вида. 5.11. Если основания истинности, общие для некоторого количества предложений, представляют -в то же время основания истинности некоторого определенного предложения, то мы говорим, что истинность этого предложения следует из истинности упомянутых предложений. 5.12. В частности, истинность предложения "p" следует из истинности другого - "q", если все основания истинности второго являются основаниями истинности первого. 5.121. Основания истинности одного содержатся в основаниях истинности другого; р следует из q. 5.122. Если р следует из q, то смысл "р" содержится в смысле "q". 5.123. Если бог создает мир, в котором истинны некоторые определенные предложения, то он тем самым создает мир, в котором верны предложения, следующие из них. И подобно этому, он не мог бы создавать такого мира, в котором предложение "р" было бы истинно, не создавая всей совокупности его объектов. 5.124. Предложение утверждает каждое предложение, следующее из него. 5.1241. "p.q" есть одно из тех предложений, которые утверждают "р" и которые в то же время утверждают "q". 5.13. Тот факт, что истинность одного предложения следует из истинности других предложений, мы усматриваем из структуры предложений. 5.131. Если истинность одного предложения следует из истинности других, то это выражается теми отношениями, в которых находятся между собой формы этих предложений; и мы не нуждаемся в том, чтобы ставить их в эти отношения, связывая предварительно друг с другом в одно предложение, так как эти связи являются внутренними и существуют постольку, и лишь постольку, поскольку существуют эти предложения. 5.1311. Если мы заключаем от р V q и ~р к q, то отношение между формами предложений "p\/q" и "~р" здесь затемняется способом обозначения. Но если мы, например, вместо "pVq" напишем "р / q -/- р / q и вместо "~р" - "~p/р" (р/q==ни р, ни q), тo внутренняя связь станет очевидной. 5.132. Если р следует из q, то я могу заключить от q к р; вывести р из q. 5.133. Все выводы происходят априори. 5.134. Из одного элементарного предложения не может следовать никакое другое. 5.135. Никаким образом нельзя заключать из существования какого-либо одного положения вещей о существовании другого, полностью отличного от первого. 5.136. Нет причинной связи, которая оправдывает подобный вывод. 5.1361. События будущего не могут выводиться из событий настоящего. 5.1362. Свобода воли состоит в том, что будущие действия сейчас не могут быть познаны. Мы могли бы их знать только в том случае, если причинность была бы внутренней, необходимостью, как и необходимость логического вывода. Связь здания и познанного есть связь логической необходимости. 5.1363. Если из того, что предложение для нас очевидно, не следует, что оно истинно, то очевидность также не является оправданием для нашей веры в его истинность. 5.14. Если какое-либо предложение следует из другого, то последнее говорит больше, чем первое; первое меньше, чем последнее. 5.141. Если р следует из q и q из р, то они являются одним и тем же предложением. 5.142. Тавтология следует из всех предложений: она ничего не говорит. 5.143. Противоречие есть то общее у предложений, что ни одно предложение не имеет общим с другими. Тавтология есть общее всех тех предложений, которые не имеют друг с другом ничего общего. 5.15. Если Иr - количество оснований истинности предложения "r", а Иrs -количество тех оснований истинности предложения "s", которые одновременно являются основаниями истинности "r", то мы назовем отношение Иrs : Иr мерой вероятности, которую предложение "r" дает предложению "s". 5.151. Пусть в схеме, подобной той, которая приведена выше за № 5.101, Иr - количество "И" в предложении "r"; Иrs - количество тех "И" в предложении s, которые стоят в одинаковых столбцах с "И" предложения r. Тогда предложение " r " дает предложению "s" вероятность Иrs : Иr. 5.1б11. Нет никакого особого объекта, свойственного вероятностным предложениям. 5.152. Предложения, которые не имеют общих друг с другом аргументов истинности, мы называем независимыми друг от друга. 5.153. Предложение само по себе ни вероятно, ни невероятно. Событие наступает или не наступает; среднего не дано. 5.154. В урне было одинаковое количество белых и черных шаров (и только их). Я вытаскиваю один шар за другим и кладу их в урну обратно. Тогда я могу установить опытом, что число вынутых черных и белых шаров приближается друг к другу при постоянном вынимании. 5.155. Единица вероятностного предложения такова: обстоятельства - о которых я больше ничего не знаю - дают наступлению определенного события такую-то и такую-то степень вероятности. 5.156. Таким образом, вероятность есть обобщение. Она включает общее описание формы предложения. Только за неимением достоверности мы нуждаемся в вероятности. Когда мы знаем факт не полностью, но, однако, знаем что-то о его форме. 5.2. Структуры предложении стоят друг к другу во внутренних отношениях. 5.21. Мы можем подчеркнуть эти внутренние отношения в нашем способе выражения, изображая предложение как результат операции, которая образует его из других предложений (оснований (Basen) операций). 5.22. Операция есть выражение отношения между структурами их результатов и их оснований. 5.23. Операция есть то, что должно произойти с предложением, чтобы образовать из него другие. 5.231. И это, естественно, зависит от их формальных свойств, от внутреннего подобия их форм. 5.232. Внутреннее отношение, упорядочивающее ряд, эквивалентно операции, благодаря которой один член возникает из другого. 5.233. Операция впервые может выступать там, где одно предложение возникает из другого логически значимым способом, т. е. там, где начинается логическая конструкция предложения. 5.234. Функции истинности элементарных предложений являются результатами операций, которые имеют своими основаниями элементарные предложения. (Эти операции я называю операциями истинности.) 5.2341. Смысл функции истинности р есть функция смысла р. 5.24. Операция проявляется в переменной; она показывает, как из одной формы предложения можно получить другую. 5.241. Операция характеризует не форму, а только различие форм. 5.242. Та же самая операция, которая выводит "q" из "p", выводит из "q" из "p" и так далее. Это может быть выражено только тем, что "р", "q", "r" и т. д. Являются переменными, которые дают общее выражение определенным формальным отношениям. 5.25. Наличие операции не характеризует смысла предложения. 5.251. Функция не может быть своим собственным аргументом, а результат операции может быть ее собственным основанием. 5.252. Только так возможен переход от члена к члену в формальном ряду (от типа к типу в иерархии Рассела и Уайтхеда). (Рассел и Уайтхед не признавали возможности этого перехода, но всегда его употребляли.) 5.2521. Повторное применение операции к своему собственному результату я называю ее последовательным применением ( "0' 0' 0' , а") есть результат трехразового последовательного применения "0' " к "а"). 5.2522. Общий член формального ряда а, О', а, О' О' а... я пишу поэтому так: "[а, x, О' , х]". Это выражение в скобках есть переменная. Первый член выражения в скобках есть начало формального ряда, второй - форма произвольного члена х ряда и третий - форма того члена ряда, который непосредственно следует за х. 5.2523. Понятие последовательного применения операции эквивалентно понятию "и так далее". 5.253. Одна операция может аннулировать результат другой. Операции могут друг друга аннулировать. 5.254. Операция может исчезать (например, отрицание в "~ ~ p". ~ ~ р=р). 5.3. Все предложения представляют результат операций -истинности с элементарными предложениями. 5.31. Схемы № 4.31 имеют значение также тогда, когда "р", "q", "r" и т. д. не являются элементарными предложениями. 5.32. Все функции истинности являются результатами последовательного применения конечного количества операций истинности к элементарным предложениям. 5.4. Здесь становится ясным, что нет "логических объектов", "логических констант" (в смысле Фреге и Рассела). 5.41. Ибо все те результаты операций истинности над функциями истинности, которые являются одной и той же функцией истинности элементарных предложений, тождественны. 5.42. Очевидно, что V, É и т. д. не являются отношениями в смысле правого и левого. 5.43. Заранее, однако, довольно трудно поверить в то, что из факта р должно следовать бесконечно много других фактов, а именно ~ ~ р, ~ ~ ~ ~р и т. д. И не менее удивительно, что бесконечное количество предложений логики (математики) следует из полдюжины "исходных предложений" (Grundgesetze) . 5.44. Функции истинности не являются материальными функциями. 5.441. Это исчезновение мнимых логических констант выступает и в том случае, если "~($ х). ~fx" говорит то же самое, что и "(х). fx, или если "~($ х). ~fxх = a" говорит то же самое, что и "fа". 5.442. Если нам дано предложение, то вместе с ним уже даны результаты всех операций истинности, основанием которых оно является. 5.45. Если есть логические первичные знаки, то правильная логика должна уяснить их место по отношению друг к другу и оправдать их существование. Конструкция логики из ее первичных знаков должна стать ясной. 5.451. Если логика имеет исходные понятия, то они должны быть независимыми друг от друга. Если введено исходное понятие, то оно должно быть введено во всех связях, в которых оно вообще имеет место. Следовательно, нельзя вводить понятие сначала для одной связи, а потом для другой. Например: если введено отрицание, то мы должны его понимать в предложениях формы "~ p" так же, как в предложениях вида - ~ p V q)", "($ х). ~fx " и других. Мы не можем вводить его сначала для одного класса случаев, потом для другого, потому что тогда оставалось бы сомнительным, является ли его значение в обоих случаях одинаковым, и не было бы основания для у потребления в обоих случаях одного и того же способа символизации. 5.452. Введение нового знака в символизм логики должно быть всегда чревато последствиями. Ни один новый знак не должен вводиться в логике - так сказать, с совершенно невинной миной - в скобках или в сноске. 5.453. Все числа в логике должны допускать оправдание. 5.454. В логике нет соседства, нельзя дать никакой классификации. 5.4541. Решения логических проблем должны быть простыми, так как они устанавливают стандарт простоты. 5.46. Если логические знаки вводятся правильно, то тем самым вводится смысл всех их комбинаций, следовательно, не только "pVq", но также и "~(pV~q)" и т. д. Тем самым вводится результат всех возможных комбинаций скобок. И благодари этому становится ясным, что собственно общими первичными знаками являются не "p\/q", ($ х) f(x)" и т. д., а самая общая форма их комбинаций. 5.461. Большое значение имеет тот кажущийся неважным факт, что логические псеадоотношения, как V и É, нуждаются в скобках, в отличие от действительных отношений. 5.4611. Логические знаки операций являются пунктуациями. 5.47. Ясно, что все то, что может быть сказано заранее о форме всех предложений вообще, может быть сказано за один раз (aufeinmal). 5.471. Общая форма предложения есть сущность предложения. 5.4711. Дать сущность предложения значит дать сущность всех описаний, следовательно, дать сущность мира. 5.472. Описание самой общей формы предложения есть описание одного и единственного общего первичного знака в логике. 5.473. Логика должна сама о себе заботиться. Возможный знак тоже должен быть способен обозначать. 5.4731. Самоочевидность, о которой так много говорил Рассел, в логике может стать лишней только благодаря тому, что язык сам предотвращает каждую логическую ошибку. Априорность логики заключается в том, что нельзя нелогически мыслить. 5.4732. Мы не можем дать знаку неправильный смысл. 5.47321. "Бритва" Оккама не является, конечно, произвольным правилом или правилом, оправданным своим практическим успехом: она просто .говорит, что не необходимый элемент символики ничего не значит. 5.4733. Фреге говорит: каждое законно образованное предложение должно иметь некоторый смысл; и я говорю: каждое возможное предложение образовано законно, и если оно не имеет смысла, то это может быть только потому, что мы не дали некоторым его составным частям никакого значения. 5.474. Количество необходимых основных операций зависит только от нашего способа записи. 5.475. Это только вопрос построения системы знаков с определенным числом измерений-с определенной математической множественностью. 5.476. Ясно, что здесь речь идет не о количестве исходных понятий, которые должны обозначаться, но только о выражении правила. 5.5. Каждая функция истинности есть результат последовательного применения операций (- - - - -И) к элементарным предложениям. 5.501. Выражение в скобках, члены которого являются предложениями, я обозначаю-если последовательность членов в скобках безразлична-знаком вида "x". "x" есть переменная, значения которой являются членами выражения, заключенного в скобки; и черточка над переменной означает, что она заменяет все свои значения в скобках. 5.502. Я, следовательно, пишу вместо " (- - - - -И) (x...)", N(x)". 5.503. Так как, очевидно, легко выразить, как посредством этой операции могут образовываться предложения и как посредством ее они не должны образовываться, то поэтому данное обстоятельство также должно допускать точное выражение. 5.51. Если x имеет только одно значение, то N(x) = ~ р (не р), и если имеет два значения, то N(x) = ~ p. ~ q (ни р, ни q). 5.511. Как может всеобъемлющая, отражающая мир логика употреблять такие специальные трюки и манипуляции? Только связывая все это в бесконечно тонкую сеть, в огромное зеркало. 5.512. "~ р" истинно, если "p" ложно. Следовательно, в истинном предложении "~ р" "р" есть ложное предложение. Как может теперь штрих "~" привести его в соответствие с действительностью? 5.513. Можно было бы сказать: общее всех символов, которые утверждают как р, так и q, есть предложение "pVq". Общее всех символов, которые утверждают или р, или q, есть предложение "рVq". 5.514. Если установлен способ записи, то в нем имеется правило, по которому образуются все предложения, отрицающие р, правило, по которому образуются все предложения, утверждающие р, правило, по которому образуются все предложения, утверждающие р или q, и т. д. 5.515. Следует показать в наших символах, что то, что связывается посредством "V", "." и т. д., должно быть предложениями. 5.5151. Должен ли знак отрицательного предложения образовываться с помощью знака положительного? Почему нельзя выразить отрицательное предложение посредством отрицательного факта? (Например, если "а" не стоит в определенном отношении к "b", то это можно было выразить тем, что aRb не имеет места.) 5.52. Если значения S являются всеми значениями функции fx для всех значений х, то N(x) = ~($x).fx 5.521. Я отделяю понятие "все" от функции истинности. 5.522. Своеобразие "символики общности", во-первых, в том, что она ссылается на логический первообраз, и, во-вторых, что она подчеркивает константы. 5.523. Символ общности выступает как аргумент. 5.524. Если даны объекты, то тем самым уже даны все объекты. 5.525. Неправильно передавать предложение "($x).fх" словами "fx возможно", как это делает Рассел. 5.526. Можно полностью описать мир при помощи вполне обобщенных предложений, т. е. не согласовывая заранее какое-либо имя с определенным объектом.
|
|||
|