Хелпикс

Главная

Контакты

Случайная статья





Получение. Химические свойства



Получение

1. Окисление первичных спиртов и альдегидов (кислородом на катализаторе; KMnO4; K2Cr2O7):

O O
// //
R- -CH2OH [O]® R– – C [O]® R- -C
\ \
H OH

первичный

спирт

альдегид

кислота

2. Промышленный синтез муравьиной кислоты:

a) каталитическое окисление метана

2CH4 + 3O2 ––t°® 2H–COOH + 2H2O

b) нагреванием оксида углерода (II) c гидроксидом натрия

CO + NaOH ––p;200°C® H–COONa ––H2SO4® H–COOH

3. Промышленный синтез уксусной кислоты:

a) каталитическое окисление бутана

2CH3–CH2–CH2–CH3 + 5O2 ––t°® 4CH3COOH + 2H2O

b) нагреванием смеси оксида углерода (II) и метанола на катализаторе под давлением

CH3OH + CO ® CH3COOH

4. Ароматические кислоты синтезируют окислением гомологов бензола:

5 + 6KMnO4 + 9H2SO4 ––t°® 5 + K2SO4 + 6MnSO4 + 14H2O

5. Гидролиз функциональных производных (сложных эфиров, ангидридов, галогенангидридов, амидов).

Химические свойства

1. Из-за смещения электронной плотности от гидроксильной группы O–H к сильно поляризованной карбонильной группе C=O молекулы карбоновых кислот способны к электролитической диссоциации:

R–COOH « R–COO- + H+

Сила карбоновых кислот в водном растворе невелика.

2. Карбоновые кислоты обладают свойствами, характерными для минеральных кислот. Они реагируют с активными металлами, основными оксидами, основаниями, солями слабых кислот.

2СH3COOH + Mg ® (CH3COO)2Mg + H2­

2СH3COOH + СaO ® (CH3COO)2Ca + H2O

H–COOH + NaOH ® H–COONa + H2O

2СH3CH2COOH + Na2CO3 ® 2CH3CH2COONa + H2O + CO2­

СH3CH2COOH + NaHCO3 ® CH3CH2COONa + H2O + CO2­

Карбоновые кислоты слабее многих сильных минеральных кислот (HCl, H2SO4 и т.д.) и поэтому вытесняются ими из солей:

СH3COONa + H2SO4(конц.) ––t°® CH3COOH + NaHSO4

3. Образование функциональных производных:

a) при взаимодействии со спиртами (в присутствии концентрированной H2SO4) образуются сложные эфиры. Образование сложных эфиров при взаимодействии кислоты и спирта в присутствии минеральных кислот называется реакцией этерификации (ester с латинского "эфир").

Данную реакцию рассмотрим на примере образования метилового эфира уксусной кислоты из уксусной кислоты и метилового спирта:

CH3 –OH(уксусная кислота) + HO–CH3(метиловый спирт) ®

® CH3 –OCH3(метиловый эфир уксусной кислоты) + H2O

 

 

Общая формула сложных эфиров R– –OR’ где R и R' – углеводородные радикалы: в сложных эфирах муравьиной кислоты – формиатах –R=H.

Обратной реакцией является гидролиз (омыление) сложного эфира:

CH3 –OCH3 + HO–H ® CH3 –OH + CH3OH

Как видно, процесс этерификации обратимый:

CH3 –OH + HO–CH3 « CH3 –OCH3 + H2O

поэтому при наступлении химического равновесия в реакционной смеси будут находиться как исходные, так и конечные вещества.

Катализатор (ионы водорода) – одинаково ускоряют прямую и обратную реакции, то есть достижение равновесия. Чтобы сдвинуть равновесие в сторону образования эфира, следует брать в избытке исходные кислоту или спирт, или удалять один из продуктов реакции из сферы взаимодействия – например, отгоняя эфир или связывая воду водоотнимающими средствами.

Методом "меченых атомов" с помощью тяжёлого изотопа кислорода показано, что вода при этерификации образуется за счёт атома водорода спирта и гидроксила кислоты:

 

 

O
II

 

 

O
II

 

R–

C-

-18OH + H -

-O–R’ ––H+® R–

C

–O–H + H218O

 

Учитывая этот факт, предложен следующий механизм реакции этерификации.
Кислород карбонильной группы кислоты захватывает протон, образуя оксониевый катион (I), который находится в равновесии с карбкатионом (II).
Молекула спирта атакует далее карбкатион (II), присоединяется к нему за счёт неподелённой пары электронов кислородного атома и образует оксониевый катион (III), который находится в равновесии с оксониевым катионом (IV).
От катиона (IV) отщепляется молекула воды, в результате чего образуется карбкатион (V), который находится в равновесии с оксониевым катионом (VI).
Оксониевый катион (VI) выбрасывает протон, являющийся катализатором реакции, приводя к молекуле конечного продукта – сложному эфиру.

b) при воздействии водоотнимающих реагентов в результате межмолекулярной дегидратации образуются ангидриды

CH3 –OH + H–O– –CH3 ––(P2O5)® CH3 –O– –CH3 + H2O

c) при обработке карбоновых кислот пятихлористым фосфором получают хлорангидриды

CH3 –OH + PCl5 ® CH3 –Cl + POCl3 + HCl

Гидролиз всех функциональных производных карбоновых кислот (ангидридов, хлорангидридов, сложных эфиров и др.) приводит в кислой среде к исходным карбоновым кислотам, а в щелочной среде – к их солям.

4. Галогенирование. При действии галогенов (в присутствии красного фосфора) образуются a-галогензамещённые кислоты:

CH3–CH2–COOH ––Br2;(P)® CH3– CH–COOH (a-бромпропионовая кислота(2-бромпропановая кислота))

                                                    I
                                                     Br                                      + HBr

a- Галогензамещённые кислоты – более сильные кислоты, чем карбоновые, за счёт -I эффекта атома галогена.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.