|
|||
I. ПРЕДЕЛЫ. Теоретические вопросыСтр 1 из 2Следующая ⇒ I. ПРЕДЕЛЫ Теоретические вопросы 1. Понятие числовой последовательности и ее предела. Теорема об ограниченности сходящейся последовательности. 2. Понятие предела функции в точке. Понятие функции, ограниченной в окрестности точки. Теорема об ограниченности функции, имеющей предел. 3. Теорема о переходе к пределу в неравенствах. 4. Теорема о пределе промежуточной функции. 5. Понятие непрерывности функции. Доказать непрерывность функции . 6. Первый замечательный предел . 7. Понятие бесконечно малой функции. Теорема о связи между функцией, ее пределом и бесконечно малой. 8. Теорема о сумме бесконечно малых функций. 9. Теорема о произведении бесконечно малой функции на ограниченную функцию. 10. Теорема об отношении бесконечно малой функции к функции, имеющей предел, отличный от нуля. 11. Теорема о пределе суммы. 12. Теорема о пределе произведения. 13. Теорема о пределе частного. 14. Теорема о переходе к пределу под знаком непрерывной функции. 15. Непрерывность суммы, произведения и частного. 16. Непрерывность сложной функции. 17. Понятие бесконечно большой функции. Теоремы о связи бесконечно больших функций с бесконечно малыми. 18. Сравнение бесконечно малых функций. 19. Эквивалентные бесконечно малые функции. Теорема о замене бесконечно малых функций эквивалентными. 20. Условие эквивалентности бесконечно малых функций.
|
|||
|