Хелпикс

Главная

Контакты

Случайная статья





Определение ткани. Понятие о клеточных популяциях и дифферонах. Стволо­вые клетки и их свойства. Коммутирование, детерминация и дифференцировка клеток.



№ 3 Определение клетки. Основные положения клеточной теории - вклад Шванна, Шлейдена, Пуркинье, Вирхова в ее создание и развитие. Взаимодействие структурных компонентов клетки при некоторых проявлениях ее жизнедеятель­ности: синтез вещества, внутриклеточный транспорт и гидролиз.

Клетка — это ограниченная активной мембраной, упорядоченная струк­турированная система биополимеров, образующих ядро и цитоплазму, уча­ствующих в единой совокупности метаболических и энергетических процес­сов, осуществляющих поддержание и воспроизведение всей системы в це­лом.

Клеточная теория. В настоящее время клеточная теория гласит: 1) клетка является наименьшей единицей живо­го, 2) клетки разных организмов принципиально сходны по своему строе­нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле­ток и их производных, объединенные в целостные интегрированные систе­мы тканей и органов, подчиненные и связанные между собой межклеточ­ными, гуморальными и нервными формами регуляции.

1. Клетка — наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов считал, что каждая клетка несет в себе полную характеристику жизни. Согласно одному из современных определений, живые организмы представляют собой открытые, саморегулирующиеся и само­воспроизводящиеся системы, важнейшими функционирующими компонен­тами которых являются белки и нуклеиновые кислоты. Живому свойствен ряд совокупных при­знаков: способность к воспроизведению (репродукции), использо­вание и трансформация энергии, метаболизм, чувстви­тельность, адаптация, изменчивость. Такую совокупность этих признаков впервые можно обнаружить только на клеточном уровне.

2. Сходство клеток разных организмов по строению. Клетки могут иметь самую разнообразную внешнюю форму: шаровидную (лейкоциты), многогранную (клетки железистого эпителия), звездчатую и разветвленно-отростчатую (нервные и костные клетки), веретеновидную (гладкие мышечные клетки, фибробласты), призматическую (кишечный эпителиоцит), уплощенную (эндотелиоцит, мезотелиоцит) и др.

3. Размножение клеток путем деления исходной клетки. Т. Шванн в своих обобщениях подчеркивал одинаковость принципа разви­тия клеток как у животных, так и у растений. Сформулированное позднее Р. Вирховым положение «всякая клетка от клетки» можно считать биологи­ческим законом. Размножение клеток, прокариотических и эукариотичес-ких, происходит только путем деления исходной клетки, которому пред­шествует воспроизведение ее генетического материала (репродукция ДНК). У эукариотических клеток единственно полноценным способом деления является митоз, или непрямое деление. При этом образуется специальный аппарат клеточного деления, клеточное веретено, с помощью которого равномерно и точно по двум дочерним клеткам распределяют хромосомы, до этого удвоившиеся в числе. Митоз наблюдается у всех эукариотических, как растительных, так и животных клеток.

4. Клетки как части целостного организма. Каждое прояв­ление деятельности целого организма, будь то реакция на раздражение или движение, иммунные реакции и многое другое, осуществляется специали­зированными клетками.

Многоклеточные организмы представляют собой сложные ансамбли спе­циализированных клеток, объединенных в целостные, интегрированные си­стемы тканей и органов, подчиненные и связанные межклеточными, гумо­ральными и нервными формами регуляции.

Во взаимодействии структур клетки важное значение играет гиалоплазма. Она объединяет все клеточные структуры и обеспечивает хими­ческое взаимодействие их друг с другом. Через гиалоплазму осуществляется большая часть внутриклеточных транспортных процессов: перенос амино­кислот, жирных кислот, нуклеотидов, сахаров. В гиалоплазме идет постоян­ный поток ионов к плазматической мембране и от нее к митохондриям, к ядру и вакуолям. Гиалоплазма является основным вместилищем и зоной перемещения массы молекул АТФ. В гиалоплазме происходит отложение запасных продуктов: гликогена, жировых капель, некоторых пигментов.

Гидролиз — реакция разложения вещества с участием воды; в организме Г. является одной из основных реакций обмена жиров, белков, углеводов и нуклеиновых кислот.

№ 5 Определение ткани. Закономерности эволюции тканей (вклад А. А. Заварзина и Н. Г. Хлопина). Морфо-функциональная и генетическая классификация тканей. Характеристика структурных элементов тканей. Адаптация и изменчивость тканей.

Ткань - это возникшая в эволюции частная система организма, которая состоит из одного или нескольких дифферонов клеток и их производных и обладает специфическими функциями благодаря кооперативной деятельности всех её элементов.

А.А. Заварзин считал основной задачей гистологии – выяснение общих закономерностей филогенетической дифференцировки разновидностей специализированных клеток в пределах каждой ткани при сохранении ограниченного числа морфофункциональных типов тканей.

Н. Г. Хлопин сделала обобщение в области изучения эволюционного развития тканей.

Все ткани делятся на 4 морфофункциональные группы:

I. эпителиальные ткани (куда относятся и железы);

II.ткани внутренней среды организма - кровь и кроветворные ткани, соединительные ткани;
III. мышечные ткани,
IV. нервная ткань.

Внутри этих групп (кроме нервной ткани) различают те или иные виды тканей. Например, мышечные ткани подразделяются, в основном, на 3 вида:

скелетную, сердечную и гладкую мышечные ткани.

Ещё более сложными являются группы эпителиальных и соединительных тканей.

Ткани, принадлежащие к одной группе, могут иметь разное происхождение.
Например, эпителиальные ткани происходят из всех трёх зародышевых листков. Таким образом, тканевая группа - это совокупность тканей, имеющих сходные морфофункциональные свойства независимо от источника их развития.

В образовании ткани могут принимать участие следующие элементы:

клетки, производные клеток (симпласты, синцитии), постклеточные структуры (такие, как эритроциты и тромбоциты), межклеточное вещество (волокна и матрикс).

Каждая ткань отличаетсяопределённым составомтакихэлементов.Например, скелетная мышечная ткань - это лишь симпласты (мышечные волокна. Этот состав обуславливает специфические функции каждой ткани.

Причём, выполняя эти функции, элементы тканей обычно тесно взаимодействуют между собой, образуя единое целое.

Каждая специализированная клетка есть результат развития - дифференцировки. Поэтому в некоторых тканях присутствуют и предшествующие, более ранние, формы клеток. Например, в эпидермисе кожи имеются стволовые клетки, из которых развиваются более зрелые клетки - вплоть до роговых чешуек. Все клетки, способные к пролиферации и служащие источником обновления ткани, называются камбиальными.

В то же время, в других тканях имеются только конечные клетки (нервная ткань, эпителий канальцев почки).

В одном органе обычно содержится несколько разных тканей. Так, в мышце имеются представители всех основных типов тканей:

мышечная ткань, соединительные ткани (прослойки между волокнами, окружающие фасции, стенки сосудов), нервная ткань (нервы), эпителиальная ткань (эндотелий сосудов), кровь (внутри сосудов).

При этом тонкая структура и функция клеток ткани часто зависят от того, в каком органе находится эта ткань.

Так, клетки однослойного цилиндрического эпителия в кишечнике настроены на всасывание продуктов пищеварения, а в собирательных канальцах почек - на всасывание воды. Для чего требуются различные ферментные системы и регуляторные механизмы.

№ 6 Определение ткани. Понятие о клеточных популяциях и дифферонах. Стволо­вые клетки и их свойства. Коммутирование, детерминация и дифференцировка клеток.

Ткань - это возникшая в эволюции частная система организма, которая состоит из одного или нескольких дифферонов клеток и их производных и обладает специфическими функциями благодаря кооперативной деятельности всех её элементов.

Ключевым моментом гистогенеза (развития тканей) является их дифференцировка. Все клетки многоклеточного организма развиваются из одной клетки - зиготы. Зигота обладает тотипотентностью - способностью давать начало любой клетке. Последующие клетки (бластомеры, клетки зародышевых листков) уже не тоти-, а полипотентны: способны давать начало не всем, но многим (нескольким) разным видам клеток.

По мере дальнейшего эмбрионального развития происходит ещё большее сужение потенций. В результате, образуются разные стволовые клетки (источник образования высокодифференцированных клеток). Одни из стволовых клеток формально остаются полипотентными: могут развиваться в разные виды клеток. Пример - стволовые клетки крови - источник всех видов клеток крови. Другие стволовые клетки становятся унипотентными - могут развиваться только по одному направлению. Примеры - стволовые сперматогенные клетки и стволовые клетки эпидермиса.

Итак, в процессе эмбриогенеза происходит постепенное ограничение возможных направлений развития клеток. Этот феномен называется коммитированием. Он постоянно имеет место и во взрослом организме - при дифференцировке полипотентных стволовых клеток.

Механизм коммитирования - стойкая репрессия одних и дерепрессия других генов. Таким образом, по мере развития в клетках постепенно меняется спектр фунционально активных генов, и это определяет всё более узкое и конкретное направление дальнейшего развития клеток.

На определённой стадии коммитирование приводит к тому, что у клетки остаётся только один путь развития: такая клетка называется детерминированной. Итак, детерминация- это появление у клетки генетической запрограммированности только на один путь развития. Таким образом, детерминация - более узкое понятие, чем коммитирование: превращение тотипотентных клеток в полипотентные, олигопотентные и, наконец, унипотентные - это всё коммитирование; о детерминации же можно говорить лишь только на самом последнем этапе - при образовании унипотентных клеток. Действительно, поли- или олигопотентная клетка - ещё не детерминирована: у неё сохраняются разные варианты развития. Дифференцировка- это последовательное изменение структуры и функции клетки, которое обусловлено генетической программой развития и приводит к образованию высокоспециализированных клеток.

Дифференцировка приводит к образованию дифферонов.

Дифферон - это совокупность клеточных форм (от стволовой клетки до высокодифференцированных), составляющих определённую линию дифференцировки.

В тех случаях, когда в диффероне постоянно происходит процесс дифференцировки (как, например, в эпидермисе), устанавливается стационарное состояние:каждая клеточная форма дифферона образуется с такой же скоростью, с какой происходит её убыль.

Для поддержания такого состояния необходимо, чтобы стволовые клетки не только регулярно вступали в дифференцировку, но и постоянно пополняли свой запас. Это обеспечивается за счёт двух типов деления стволовых клеток -"дифференцировочных": дочерние клетки вступают в процесс дифференцировки;

и "недифференцировочных": дочерние клетки сохраняют все свойства стволовых клеток.

Нередко говорят не о двух типах делений, а о двух типах потомков, образующихся при делениях стволовых клеток: одни потомки сохраняют свойства стволовых клеток, другие - вступают в процесс дифференцировки. Такая способность обозначается, как способность к самоподдержанию. Это одно из ключевых свойств стволовых клеток.

№ 7 Развитие тканей в онтогенезе. Принципы классификации тканей. Понятие: ткань, тканевой тип, тканевая группа. Взаимосвязь тканей. Физиологическая и репаративная регенерация. Ключевым моментом гистогенеза (развития тканей) является их дифференцировка. Все клетки многоклеточного организма развиваются из одной клетки - зиготы. Зигота обладает тотипотентностью - способностью давать начало любой клетке. Последующие клетки (бластомеры, клетки зародышевых листков) уже не тоти-, а полипотентны: способны давать начало не всем, но многим (нескольким) разным видам клеток. По мере дальнейшего эмбрионального развития происходит ещё большее сужение потенций. В результате, образуются разные стволовые клетки (источник образования высокодифференцированных клеток). Одни из стволовых клеток формально остаются полипотентными: могут развиваться в разные виды клеток.Пример - стволовые клетки крови - источник всех видов клеток крови. Другие стволовые клетки становятся унипотентными - могут развиваться только по одному направлению. Примеры - стволовые сперматогенные клетки и стволовые клетки эпидермиса. Итак, в процессе эмбриогенеза происходит постепенное ограничение возможных направлений развития клеток. Этот феномен называется коммитированием. Он постоянно имеет место и во взрослом организме - при дифференцировке полипотентных стволовых клеток. Механизм коммитирования - стойкая репрессия одних и дерепрессия других генов. Таким образом, по мере развития в клетках постепенно меняется спектр фунционально активных генов, и это определяет всё более узкое и конкретное направление дальнейшего развития клеток. На определённой стадии коммитирование приводит к тому, что у клетки остаётся только один путь развития: такая клетка называется детерминированной. Итак, детерминация- это появление у клетки генетической запрограммированности только на один путь развития. Таким образом, детерминация - более узкое понятие, чем коммитирование: превращение тотипотентных клеток в полипотентные, олигопотентные и, наконец, унипотентные - это всё коммитирование; о детерминации же можно говорить лишь только на самом последнем этапе - при образовании унипотентных клеток. Действительно, поли- или олигопотентная клетка - ещё не детерминирована: у неё сохраняются разные варианты развития. Дифференцировка- это последовательное изменение структуры и функции клетки, которое обусловлено генетической программой развития и приводит к образованию высокоспециализированных клеток. Все ткани делятся на 4 морфофункциональные группы: I. эпителиальные ткани (куда относятся и железы); II.ткани внутренней среды организма - кровь и кроветворные ткани, соединительные ткани; III. мышечные ткани,  IV. нервная ткань. Ткань - это возникшая в эволюции частная система организма, которая состоит из одного или нескольких дифферонов клеток и их производных и обладает специфическими функциями благодаря кооперативной деятельности всех её элементов. Тканевая группа - это совокупность тканей, имеющих сходные морфофункциональные свойства независимо от источника их развития. Физиологическая регенерация – восстановление организмом утраченных или поврежденных органов или тканей. Репаративная регенерация –восстановление какой – либо ткани в патологических услови­ях.


  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.