Хелпикс

Главная

Контакты

Случайная статья





Жизненный (клеточный) цикл: определение, характеристика его этапов. Особенности жизненного цикла клеток различных видов тканей. Внутриклеточная регенерация.



 

№ 1 Жизненный (клеточный) цикл: определение, характеристика его этапов. Особенности жизненного цикла клеток различных видов тканей. Внутриклеточная регенерация.

Увеличение числа клеток, их размножение происходят путем деления исходной клетки. Деле­нию клеток предшествует редупликация их хромосомного аппарата, синтез ДНК. Это правило является общим для прокариотических и эукариотических клеток. Время существования клетки как таковой, от деления до деле­ния или от деления до смерти, называют клеточным циклом (cyclus cellularis).

Во взрослом организме высших позвоночных клетки различных тканей и органов имеют неодинаковую способность к делению. Встречаются попу­ляции клеток, полностью потерявшие свойство делиться. Это большей час­тью специализированные, дифференцированные клетки (например, зернистые лейкоциты крови). В организме есть постоянно обновляющиеся тка­ни — различные эпителии, кроветворные ткани. В таких тканях существует часть клеток, которые постоянно делятся, заменяя отработавшие или поги­бающие клеточные типы (например, клетки базального слоя покровного эпителия, клетки крипт кишечника, кроветворные клетки костного мозга). Многие клетки, не размножающиеся в обычных условиях, и приобретают вновь это свойство при процессах репаративной регенерации органов и тка­ней. Размножающиеся клетки обладают разным количеством ДНК в зави­симости от стадии клеточного цикла. Это наблюдается при размножении как соматических, так и половых клеток.

Весь клеточный цикл состоит из 4 отрезков времени: собственно мито­за (М), пресинтетического (G1), синтетического (S) и постсинтетического (G2) периодов интерфазы.

Митоз включает в себя 4 фазы: профаза, метафаза, анафаза, телофаза.

В G1-периоде, наступающем сразу после деления, клетки имеют диплоидное содержание ДНК на одно ядро (2с). После деления в период G1 в дочерних клетках общее содержание белков и РНК вдвое меньше, чем в исходной родительской клетке. В период G1 на­чинается рост клеток главным образом за счет накопления клеточных бел­ков, что обусловлено увеличением количества РНК на клетку. В этот пери­од начинается подготовка клетки к синтезу ДНК (S-период).

В следующем, S-периоде происходит удвоение количества ДНК на ядро и соответственно удваивается число хромосом. В разных клетках, находящих­ся в S-периоде, можно обнаружить разные количества ДНК — от 2 до 4 с.

Постсинтетическая (G2) фаза называется также премитотической. В дан­ной фазе происходит синтез иРНК, необходимый для прохождения митоза. Несколько ранее этого синтезируется рРНК. Среди синтезирующихся в это время белков особое место занимают тубулины — белки митотического ве­ретена. В конце G2-периода или в митозе синтез РНК резко падает и полностью прекращается во время митоза. Синтез белка во время митоза достигает своего максимума в G2-периоде.

В растущих тканях растений и животных всегда есть клетки, которые находятся как бы вне цикла. Такие клетки принято называть клетками Go-периода.

Это клетки, которые после митоза не вступают в пресинтетический период (G1). Именно они представляют собой покоящиеся, временно или окончательно переставшие размножаться клетки. В некоторых тканях такие клетки могут находиться длительное время, не изменяя своих морфологических свойств: они сохраняют способ­ность к делению. Это камбиальные клетки (например, стволовые в крове­творной ткани). Чаще потеря способности делиться сопровождается специализацией и дифференцировкой. Такие дифференци­рующиеся клетки выходят из цикла, но в особых условиях могут снова вхо­дить в цикл. Например, большинство клеток печени находится в G0-nepиоде; они не синтезируют ДНК и не делятся. Однако при удалении части печени у экспериментальных животных многие клетки начинают подготов­ку к митозу (G1-период), переходят к синтезу ДНК и могут митотически делиться. В других случаях, например в эпидермисе кожи, после выхода из цикла размножения и дифференцировки клетки некоторое время функци­онируют, а затем погибают (ороговевшие клетки покровного эпителия). Многие клетки теряют полностью способность возвращаться в митотичес-кий цикл. Так, например, нейроны головного мозга и кардиомиоциты по­стоянно находятся в G0-периоде (до смерти организма).

Поврежденные клетки резко снижают митотическую активность.

Если изменения в клетке не зашли слишком далеко, происходят репа­рация клеточных повреждений, возврат клетки к нормальному функцио­нальному уровню. Процессы восстановления внутриклеточных структур на­зывают внутриклеточной регенерацией.

Репарация клеток бывает полной, когда восстанавливаются все свой­ства данных клеток, или неполной. В последнем случае после снятия дей­ствия повреждающего фактора нормализуется ряд функций клеток, но че­рез некоторое время они уже без всякого воздействия погибают. Особенно часто это наблюдается при поражениях клеточного ядра.

№ 2 Клетка, как структурно-функциональная единица ткани. Определение. Общий план строения эукариотических клеток. Взаимодействие структур клетки в процессе ее метаболизма (на примере синтеза белков и небелковых веществ). Реактивные свойства клеток, их медико-биологическое значение. Клетка — это ограниченная активной мембраной, упорядоченная струк­турированная система биополимеров, образующих ядро и цитоплазму, уча­ствующих в единой совокупности метаболических и энергетических процес­сов, осуществляющих поддержание и воспроизведение всей системы в це­лом. Кроме клеток, в организме находятся их производные, которые не имеют клеточного строения (симпласт, синцитий, межклеточное вещество). Содержимое клетки отделено от внешней среды или от соседних кле­ток плазматической мембраной (плазмолеммой). Все эукариотические клетки состоят из двух основных компонентов: ядра и цитоплазмы. В ядре различа­ют хроматин (хромосомы), ядрышки, ядерную оболочку, нуклеоплазму (карио­плазму) и ядерный белковый остов (матрикс). Цитоплазма неоднородна по своему составу и строению и включает в себя гиалоплазму (матрикс), в ко­торой находятся органеллы; каждая из них выполняет обязательную функ­цию. Часть органелл имеет мембранное строение: эндоплазматический ретикулум, аппарат Гольджи, лизосомы, пероксисомы и митохондрии. Немембран­ные органеллы цитоплазмы представлены рибосомами, клеточным центром, ресничками, жгутиками и цитоскелетом. Кроме того, в гиалоплазме могут встретиться и иные структуры или включения (жировые капли, пигментные гранулы и др.). Такое разделение клетки на отдельные компоненты не озна­чает их структурной и функциональной обособленности. Все эти компонен­ты выполняют отдельные внутриклеточные функции, необходимые для су­ществования клетки как целого, как элементарной живой единицы. Взаимодействие структур клетки на примере синтеза белка. Экспрессия генов, то есть синтез белка на основе генетической информации, осуществляется в несколько этапов. Вначале на матрице ДНК синтезируется мРНК. Этот процесс называется транскрипцией. Последовательность пуриновых и пиримидиновых оснований мРНК комплементарна основаниям так называемой некодирующей цепи ДНК: аденину ДНК соответствует урацил РНК, цитозину ДНК - гуанин РНК, тимину ДНК - аденин РНК и гуанину ДНК - цитозин РНК. В ядре каждая мРНК подвергается существенным изменениям, в частности удаляются интронные последовательности (сплайсинг). Затем она выходит через ядерную оболочку в цитоплазму, где используется в качестве матрицы для синтеза белка (трансляции). Для этого мРНК присоединяется к рибосоме, которая состоит из рРНК и большого числа белков. Чтобы занять соответствующее место в молекуле белка, каждая из 20 аминокислот вначале прикрепляется к своей тРНК. Одна из петель каждой тРНК имеет триплет нуклеотидов - антикодон, комплементарный одному из кодонов мРНК. С участием цитоплазматических факторов (фактора инициации , фактора элонгации и фактора терминации ) между аминокислотами, выстраивающимися в цепь согласно последовательности кодонов мРНК, образуются пептидные связи. По достижении терминирующего кодона синтез прекращается, и полипептид отделяется от рибосомы. Процесс биосинтеза поставляет белки не только для роста организма или для секреции в среду. Все белки живых клеток со временем претерпевают распад до составляющих их аминокислот, и для поддержания жизни клетки должны синтезироваться вновь.


  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.